Skip to main content

Neuroendocrine Effects of Caffeine in Rat and Man

  • Chapter
Caffeine

Abstract

Treatments that modify the biochemical composition of the brain or otherwise affect neurotransmission can, as a consequence, alter one or more of the brain’s three output channels: behavior; hormone secretion from neuroendocrine organs; and processes controlled by autonomic nerves (e.g., cardiac rhythm). Caffeine administration affects the levels and turnover rates of catecholamines (Berkowitz and Spector 1971; Schlosberg et al. 1981) and serotonin (Fernstrom and Fernstrom, this volume p. 107) in the CNS and may also interrupt adenosine-mediated neurotransmission. Moreover, caffeine’s brain effects are known to lead to the cardiovascular and behavioral changes that are summarized in this volume by Robertson and Curatolo (p. 77) and Dews (p. 86) respectively. This chapter considers the evidence that caffeine consumption can affect the brain’s third output channel, neuroendocrine secretion, in experimental animals and in human subjects.

Some of these studies were supported in part by grants from the International Life Sciences Institute

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldridge A, Parsons WD, Neims AH (1977) Stimulation of caffeine metabolism in the rat by 3-methylcholanthrene. Life Sci 21: 967–974

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1976 a) Identification, kinetic and quantitative study of [12–14C] and [1-Me-14C]caffeine metabolites in rat’s urine by chromatographic separations. Biochem Med 16: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1976b) Metabolism of 1,3,7-trimethyldihydrouric acid in the rat: new metabolic pathways of caffeine. Experientia 32: 1238–1240

    Article  PubMed  CAS  Google Scholar 

  • Arnold MA, Carr DB, Togasaki DM, Pian MC, Martin JB (1982) Caffeine stimulates β-endorphin release in blood but not in cerebrospinal fluid. Life Sci 32: 1017–1024

    Article  Google Scholar 

  • Avogaro P, Capri C, Pais M, Cazzolato G (1973) Plasma and urine Cortisol behavior and fat mobilization in man after coffee ingestion. Isr J Med Sci 9: 114–119

    PubMed  CAS  Google Scholar 

  • Bellet S, Roman L, DeCastro O, Evin Kim K, Kershbaum A (1969 a) Effect of coffee ingestion on catecholamine release. Metabolism 18: 288–291

    Article  PubMed  CAS  Google Scholar 

  • Bellet S, Kostis J. Roman L, DeCastro O (1969 b) Effect of coffee ingestion on adrenocortical secretion in young men and dogs. Metabolism 18: 1007–1012

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz BA, Spector S (1971) Effect of caffeine and theophylline on peripheral catecholamines. Eur J Pharmacol 13: 193–196

    Article  PubMed  CAS  Google Scholar 

  • Clemens JA, Fuller RW (1979) Differences in the effects of amphetamine and methylphenidate on brain dopamine turnover and serum prolactin concentration in reserpine-treated rats. Life Sci 24: 2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Cohen MR, Nurnberger JI, Pickar D, Gershon E, Bunney WE (1981) Dextroamphetamine infusions in normals result in correlated increases of plasma β-endorphin and Cortisol immunoreactivity. Life Sci 29: 1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Colton T, Gosselin RE, Smith RP (1968) The tolerance of coffee drinkers to caffeine. Clin Pharmacol Ther 9: 31–39

    PubMed  CAS  Google Scholar 

  • Cornish HH, Christman AA (1957) A study of the metabolism of theobromine, theophylline and caffeine in man. J Biol Chem 228: 315–323

    PubMed  CAS  Google Scholar 

  • Costa C, Trovato A, DePasquale A (1977) Effects of caffeine on corticosterone production in rats. Communication at Joint Meeting of German and Italian Pharmacologists, Venice

    Google Scholar 

  • Daubresse JC, Luyckx A, Demey-Ponsart E, Fracnhimont P, Lefebvre P (1973) Effects of coffee and caffeine on carbohydrate metabolism, free fatty acid, insulin, growth hormone and Cortisol plasma levels in man. Acta Diabetol Lat 10: 1069–1084

    Article  CAS  Google Scholar 

  • DePasquale A, Costa G, Trovato A, Ceserani R (1979) Effect of prostaglandins on the increased corticosterone output induced by caffeine in the rat. Prostaglandins Med 3: 97–103

    Article  CAS  Google Scholar 

  • Dunwiddie TV, Worth T (1982) Sedative and anti-convulsant effects of adenosine in mouse and rat. J Pharmacol Exp Ther 220: 70–76

    PubMed  CAS  Google Scholar 

  • Eddy NB, Downs AW (1928) Tolerance and cross-tolerance in the human subject to the diuretic effect of caffeine, theophylline and theobromine. J Pharmacol Exp Ther 33: 167–174

    CAS  Google Scholar 

  • Ensinck JW, Stoll RW, Gale CC, Santen RJ, Touber JL, Williams RH (1970) Effect of aminophyl-line on the secretion of insulin, glucagon, luteinizing hormone and growth hormone in humans. J Clin Endocrinol Metab 31: 153–161

    Article  PubMed  CAS  Google Scholar 

  • Geffner ME, Lippe BM, Kaplan SA, Itami RM (1982) The use of theophylline as an in vivo probe of adrenocortical function. J Clin Endocrinol Metab 55: 56–60

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Kaizer S, Whitby O (1969) Psychotropic effects of caffeine in man. IV. Quantitative and qualitative difference associated with habituation to coffee. Clin Pharmacol Ther 10: 489–497

    PubMed  CAS  Google Scholar 

  • Jung RT, Shetty PS, James WPT, Barrand MA, Callingham BA (1981) Caffeine: its effects on catecholamines and metabolism in lean and obese humans. Clin Sci 60: 527–535

    PubMed  CAS  Google Scholar 

  • Knych ET, Eisenberg RM (1979) Effects of amphetamine on plasma corticosterone in the conscious rat. Neuroendocrinology 29: 110–118

    Article  PubMed  CAS  Google Scholar 

  • Kraicer J, Ducommun P, Jobin M, Rervp C, van Rees GP, Fortier C (1963) Pituitary and plasma TSH response to stress in the intact and adrenalectomized rat. Fed Proc 22: 507

    Google Scholar 

  • Latini R (1981) Urinary excretion of an uracilic metabolite from caffeine by rat, monkey and man. Toxicol Lett 7: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Levi L (1967) The effect of coffee on the function of the sympathoadrenomedullary system in man. Acta Med Scand 181: 431–438

    Article  PubMed  CAS  Google Scholar 

  • Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74: 5482–5486

    Article  PubMed  CAS  Google Scholar 

  • Maitre M, Ciesielski L, Lehmann A, Kempf E, Mandel P (1975) Protective effect of adenosine and nicotinamide against audiogenic seizure. Biochem Pharmacol 23: 2807–2816

    Article  Google Scholar 

  • Martin JB, Reichlin S, Brown GM (1977) Clinical neuroendocrinology. Davis, Philadelphia, pp 201–228

    Google Scholar 

  • Moskowitz MA, Rubin D, Liebschutz J, Munro HN, Mowak TS, Wurtman RJ (1977) The permissive role of hypothermia in the disaggregation of brain polysomes by L-dopa or D-amphetamine. J Neurochem 28: 779–782

    Article  PubMed  CAS  Google Scholar 

  • Mueller GP, Twohy CP, Chen JT, Advis JP, Meites J (1976) Effects of L-tryptophan and restraint stress on hypothalamic and brain serotonin turnover, and pituitary TSH and prolactin release in rats. Life Sci 18: 715–724

    Article  PubMed  CAS  Google Scholar 

  • Oberman Z, Hershberg M, Jaskolka A, Havell A, Hoerer E, Laurian L (1975) Changes in plasma Cortisol, glucose, free fatty acids after caffeine ingestion in obese women. Isr J Med Sci 11: 33–36

    PubMed  CAS  Google Scholar 

  • Ravitz AJ, Moore KE (1977) Effects of amphetamine, methylphenidate and cocaine on serum prolactin concentrations in the male rat. Life Sci 21: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Rice, RW, Critchlow V (1976) Extrahypothalamic control of stress-induced inhibition of GH secretion in the rat. Endocrinology 99: 970–976

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Frolich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, Oates JA (1978) Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 298: 181–186

    Article  PubMed  CAS  Google Scholar 

  • Robertson D, Wade D, Workman R, Woosley RL, Oates JA (1981) Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest 67: 1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Schlosberg AJ, Fernstrom JD, Kopczynski MC, Cusack BM, Gillis MA (1981) Acute effects of caffeine injections on neutral amino acids and brain monoamine levels in rats. Life Sci 29: 173–183

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Katims JJ, Annau Z, Bruns RF, Daly JW (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci USA 78: 3260–3264

    Article  PubMed  CAS  Google Scholar 

  • Spindel ER, Mueller GP, Wurtman RJ (1978) D-Amphetamine: effects of TRH immunoreactivity in regions of rat brain and on plasma TSH (Abstr 398). Program of the 60th Annual Meeting of the Endocrine Society

    Google Scholar 

  • Spindel ER, Arnold MA, Cusack B, Wurtman RJ (1980) Effects of caffeine on anterior pituitary and thyroid function in the rat. J Pharmacol Exp Ther 214: 58–62

    PubMed  CAS  Google Scholar 

  • Spindel ER, Griffith L, Wurtman RJ (1983) Neuroendocrine effects of caffeine. II. Effects on thyrotropin and corticosterone secretion. J Pharmacol Exp Ther 225: 346–350

    PubMed  CAS  Google Scholar 

  • Spindel ER, McCall A, Carr D, Arnold MA, Griffith L, Wurtman RJ (to be published) Neuroendocrine effects of caffeine. III. Anterior pituitary effects limited to stimulation of adrenal axis

    Google Scholar 

  • Sullivan FM, McElhatton PR, Elmazar MM (1978) Studies on the teratogenicity of caffeine. Proceedings of First Annual Caffeine Committee Workshop, International Life Sciences Institute, Honolulu

    Google Scholar 

  • Tang-Liu DD, Williams RL, Reigelman S (1983) Disposition of caffeine and its metabolites in man. J Pharmacol Exp Ther 224: 180–185

    PubMed  CAS  Google Scholar 

  • Terry LC, Willoughby JO, Brazeau P, Martin JB, Patel Y (1976) Antiserum to somatostatin prevents stress-induced inhibition of growth hormone secretion in the rat. Science 192: 565–567

    Article  PubMed  CAS  Google Scholar 

  • van Calker D, Muller M, Hamprecht B (1979) Adenosine regulates, via two different types of receptors, the accumulation of cAMP in cultures brain cells. J Neurochem 33: 999–1005

    Article  PubMed  Google Scholar 

  • Yehuda S, Wurtman RJ (1972) The effects of D-amphetamine and related drugs on colonic temperatures of rats kept at various ambient temperatures. Life Sci 11: 851–859

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spindel, E.R., Wurtman, R.J. (1984). Neuroendocrine Effects of Caffeine in Rat and Man. In: Dews, P.B. (eds) Caffeine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69823-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69823-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69825-5

  • Online ISBN: 978-3-642-69823-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics