Skip to main content

Blue and Ultraviolet Light in Eyes: Primary Reactions and Light-Induced Metabolic Changes

  • Conference paper
Blue Light Effects in Biological Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 404 Accesses

Abstract

Animals have eyes for seeing, i.e., to discriminate variations in the environmental light distribution. The key role for detecting these light changes is played by the visual pigment molecules, because they trigger the phototransduction process: a chain of molecular reactions in the photoreceptor membrane resulting in a neural signal. The absorption spectra of an eye’s visual pigments therefore determine the spectral sensitivity of the photoreceptors and thus the spectral range which is covered by the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appleby SJ, Muntz WRA (1979) Occlusable yellow corneas in Tetraodontidae. J Exp Biol 83: 249–259

    Google Scholar 

  2. Bernard GD (1983a) Bleaching of rhabdoms in eyes of intact butterflies. Science 219: 69–71

    Article  PubMed  CAS  Google Scholar 

  3. Bernard GD (1983b) Dark processes following photoconversion of butterfly rhodopsins. Biophys Struct Mech 9: 277–286

    Article  CAS  Google Scholar 

  4. Blest AD (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: Williams TP, Baker BN (eds) The effect of constant light on visual processes. Plenum Press, New York, pp 217–245

    Google Scholar 

  5. Bridges CD (1976) Vitamin A and the role of pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp Eye Res 22: 435–455

    Article  PubMed  CAS  Google Scholar 

  6. Chader GJ (1982) Retinoids in ocular tissues: Binding proteins, transport, and mechanism of action. In: McDevitt D (ed) Cell biology of the eye. Academic Press, London New York

    Google Scholar 

  7. Chance B (1964) Fluorescence emission of the mitochondrial DPNH as a factor in the ultraviolet sensitivity of visual receptors. Proc Natl Acad Sci USA 51: 359–361

    Article  PubMed  CAS  Google Scholar 

  8. Chance B, Schoener B (1966) Fluorometric studies of flavin component of the respiratory chain. In: Slater EC (ed) Flavins and flavoprotein. Elsevier, Amsterdam, pp 510–528

    Google Scholar 

  9. Dartnall HJA (ed) (1972) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Dratz EA, Hargrave PA (1983) The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem Sci 8: 128–131

    Article  CAS  Google Scholar 

  11. Franceschini N, Stavenga DG (1981) The ultraviolet sensitizing pigment of flies studied by in vivo microspectrofluorometry. Invest Ophthalmol Vis Sei Suppl 20:no 3, 111

    Google Scholar 

  12. Franceschini N, Kirschfeld K, Minke B (1981a) Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264–1267

    Article  PubMed  CAS  Google Scholar 

  13. Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981b) Sexual dimorphism in a photoreceptor. Nature (London) 291: 241–244

    Article  Google Scholar 

  14. Gogala M, Hamdorf K, Schwemer J (1970) UV-Sehfarbstoff bei Insekten. Z Vergl Physiol 70: 410–413

    Article  Google Scholar 

  15. Ham WT Jr, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short wavelength light. Nature (London) 153–155

    Google Scholar 

  16. Ham WT Jr, Mueller HA, Ruffolo JJ Jr (1980) Solar retinopathy as a function of wavelength: its significance for protective eyewear. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York, pp 319–346

    Google Scholar 

  17. Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 145–224

    Google Scholar 

  18. Hamdorf K, Schwemer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 720–746

    Google Scholar 

  19. Hara T, Hara R (1972) Cephalopod retinochrome. In: Dartnall HJA (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 720–746

    Google Scholar 

  20. Hara T, Hara R (1982) Cephalopod retinochrome. In: Packer L (ed) Methods in enzymology, vol 81. Biomembranes, part HI, pp 827–834

    Google Scholar 

  21. Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: Evidence for a sensitising function. Biophys Struct Mech 9: 171–180

    Article  Google Scholar 

  22. Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong S-L, Rao JKM, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9: 235–244

    Article  PubMed  CAS  Google Scholar 

  23. Kirschfeld K (1981) Carotenoid pigments: Their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc R Soc London Ser B 216: 71–85

    Article  Google Scholar 

  24. Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitising pigment in fly photoreceptors. Nature (London) 269: 386–390

    Article  CAS  Google Scholar 

  25. Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomere of fly photoreceptors no R7. J Comp Physiol 125: 275–284

    Article  CAS  Google Scholar 

  26. Kruizinga B, Kamman R, Stavenga DG (1982) Laser induced visual pigment conversions in fly photoreceptors measured in vivo. Biophys Struct Mech 9: 299–307

    Article  Google Scholar 

  27. Laing RA, Fischbarg J, Chance B (1980) Non-invasive measurements of pyridinenucleotide fluorescence from the cornea. Invest Ophthalmol Vis Sci 19: 96–102

    PubMed  CAS  Google Scholar 

  28. Lerman S (1980) Radiant energy and the eye. Macmillan, New York

    Google Scholar 

  29. Liebman PA, Leigh RA (1969) Autofluorescence of visual receptors. Nature (London) 221: 1249–1251

    Article  CAS  Google Scholar 

  30. Lythgoe JN (1979) The ecology of vision. Clarendon, Oxford

    Google Scholar 

  31. Miller WH (1979) Ocular optical filtering. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 69–143

    Google Scholar 

  32. Miller GV, Itoku KA, Fleischer AB, Stark WS (1982) Damaging effects of UV treatment in normal and vitamin A deprived Drosophila eyes. Invest Ophthalmol Vis Sci Suppl 22: 66

    Google Scholar 

  33. Müntz WRA (1972) Inert absorbing and reflecting pigments. In: Dartnall HJA (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 529–565

    Google Scholar 

  34. Ovchinnikov YA, Abdulaev NG, Feigina MY, Artamov ID, Zolotarev AS, Kostina MB, Bogachuk AS, Miroshnikov AI, Martinov VI, Kudelin AB (1982) The complete amino acid sequence of visual rhodopsin. Bioorg Khim 8: 1011–1014

    CAS  Google Scholar 

  35. Pepe IM, Cugnoli C (1980) Isolation and characterization of a water soluble photopigment from honeybee compound eye. Vison Res 20: 97–102

    Article  CAS  Google Scholar 

  36. Pepe IM, Schwemer J, Paulsen R (1982) Characteristics of retinal-binding proteins from the honeybee retina. Vision Res 22: 775–781

    Article  PubMed  CAS  Google Scholar 

  37. Rodieck RW (1973) The vertebrate retina. Freeman, San Francisco

    Google Scholar 

  38. Ruddock KH (1972) Light transmission through the media and macular pigment and its significance for psychophysical investigation. In: Jameson D, Hurvich LM (eds) Handbook of sensory physiology, vol VII/4. Springer, Berlin Heidelberg New York, pp 455–469

    Google Scholar 

  39. Sarkar HK, Song P-S (1982) Blue light induced phototransformation of phytochrome in the presence of flavin. Photochem Photobiol 35: 234–246

    Google Scholar 

  40. Schmidt W (1980) Physiological blue light reception. In: Hemmerich P (ed) Structure and bonding, vol 41. Molecular structure and sensory physiology. Springer, Berlin Heidelberg New York, pp 1–44

    Google Scholar 

  41. Scholz R, Thurman RG, Williamson JR, Chance B, Bücher T (1969) Flavin and pyridine nucleotide oxidation - reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem 9: 2317–2324

    Google Scholar 

  42. Schwemer J (1979) Molekulare Grundlagen der Photorezeption bei der Schmeißfliege Calliphora erythrocephala Meig. Habilitationsschr, Ruhr Univ, Bochum

    Google Scholar 

  43. Schwemer J (1983) Pathways of visual pigment regeneration in fly photoreceptor cells. Biophys Struct Mech 9: 287–298

    Article  CAS  Google Scholar 

  44. Sickel W (1972) Retinal metabolism in dark and light. In: Fuortes MGF (ed) Handbook of sensory physiology, vol VII/2. Springer, Berlin Heidelberg New York, pp 667–727

    Google Scholar 

  45. Sickel W (1973) Energy in vertebrate photoreceptor function. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 195–203

    Google Scholar 

  46. Sliney DH, Freasier BC (1973) Evaluation of optical radiation hazards. Appl Opt 12: 1–24

    Article  PubMed  CAS  Google Scholar 

  47. Somiya H (1982) “Yellow lens” eyes of a stomiatoid deep-sea fish Malacosteus niger. Proc R Soc London Ser B 215:481–489

    Google Scholar 

  48. Sperling HG (1980) Prolonged intense spectral light effects on rhesus retina. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York, pp 195–241

    Google Scholar 

  49. Stark WS, Stavenga DG, Kruizinga B (1979) Fly photoreceptor fluorescence is related to UV sensitivity. Nature (London) 280: 581–583

    Article  Google Scholar 

  50. Stark WS, Itoku KA, Srivastava K, Carlson SD (1983) Retinal degeneration induced by intense UV and blue stimuli in Drosophila. Photochem Photobiol Suppl 37:S 84

    Google Scholar 

  51. Stavenga DG (1980) Short wavelength light in invertebrate visual sense cells - Pigments, potentials and problems. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 5–24

    Chapter  Google Scholar 

  52. Stavenga DG, Franceschini N (1981) Fly visual pigment states, rhodopsin R490, metarhodopsins M and M′, studied by transmission and fluorescence microspectrophotometry in vivo. Invest Ophthalmol Vis Sci Suppl 20: no 3, 111

    Google Scholar 

  53. Stavenga DG, Schwemer J (1984) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 5–61

    Google Scholar 

  54. Stavenga DG, Tinbergen J (1983) Light dependence of oxidative metabolism in fly compound eyes studied in vivo by microspectrofluorometry. Naturwissenschaften 70: 618–620

    Article  CAS  Google Scholar 

  55. Stavenga DG, Bernard GD, Chappell RL, Wilson M (1979) Insect pupil mechanisms III. On the pigment migration in dragonfly ocelli. J Comp Physiol 129: 199–205

    Article  Google Scholar 

  56. Stavenga DG, Franceschini N, Kirschfeld K (1984) Fluorescence of housefly visual pigment. Photochem Photobiol, in press

    Google Scholar 

  57. Straiten WP, Ogden TE (1971) Spectral sensitivity of the barnacle Balanus. J Gen Physiol 57: 435–447

    Article  Google Scholar 

  58. Vogt K (1983) Is the fly visual pigment a rhodopsin? Z Naturforsch 38c: 329–333

    Google Scholar 

  59. Vogt K, Kirschfeld K (1982) Sensitising pigment in the fly. Biophys Struct Mech 9: 319–328

    Article  Google Scholar 

  60. White RH, Gifford D, Michaud NA (1980) Turnover of photoreceptor membrane in the larval mosquito ocellus: rhabdomeric coated vesicles and organelles of the vacuolar system. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York, pp 271–296

    Google Scholar 

  61. Woodhouse JM, Campbell FW (1975) The role of the pupil light reflex in aiding adaptation to the dark. Vision Res 15: 649–653

    Article  PubMed  CAS  Google Scholar 

  62. Wyszecki G, Stiles WS (1976) Color science: concepts and methods, quantitative data and formulas. Wiley, New York

    Google Scholar 

  63. Yoshizawa T, Shichida Y (1982) Low temperature spectrophotometry of intermediates of rho- dopsin. In: Packer L (ed) Methods in enzymology, vol 81. Biomembranes, part HI. Academic Press, London New York, pp 333–353

    Google Scholar 

  64. Stark WS, Tan EWP (1982) Ultraviolet light: photosensitivity and other effects on the visual system. Photochem Photobiol 36: 371–380

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stavenga, D.G. (1984). Blue and Ultraviolet Light in Eyes: Primary Reactions and Light-Induced Metabolic Changes. In: Senger, H. (eds) Blue Light Effects in Biological Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69767-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69767-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69769-2

  • Online ISBN: 978-3-642-69767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics