Blue and Ultraviolet Light in Eyes: Primary Reactions and Light-Induced Metabolic Changes

  • D. G. Stavenga
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Animals have eyes for seeing, i.e., to discriminate variations in the environmental light distribution. The key role for detecting these light changes is played by the visual pigment molecules, because they trigger the phototransduction process: a chain of molecular reactions in the photoreceptor membrane resulting in a neural signal. The absorption spectra of an eye’s visual pigments therefore determine the spectral sensitivity of the photoreceptors and thus the spectral range which is covered by the visual system.


Photoreceptor Cell Visual Pigment Sensory Physiology Macular Pigment Photoreceptor Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Appleby SJ, Muntz WRA (1979) Occlusable yellow corneas in Tetraodontidae. J Exp Biol 83: 249–259Google Scholar
  2. 2.
    Bernard GD (1983a) Bleaching of rhabdoms in eyes of intact butterflies. Science 219: 69–71PubMedCrossRefGoogle Scholar
  3. 3.
    Bernard GD (1983b) Dark processes following photoconversion of butterfly rhodopsins. Biophys Struct Mech 9: 277–286CrossRefGoogle Scholar
  4. 4.
    Blest AD (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: Williams TP, Baker BN (eds) The effect of constant light on visual processes. Plenum Press, New York, pp 217–245Google Scholar
  5. 5.
    Bridges CD (1976) Vitamin A and the role of pigment epithelium during bleaching and regeneration of rhodopsin in the frog eye. Exp Eye Res 22: 435–455PubMedCrossRefGoogle Scholar
  6. 6.
    Chader GJ (1982) Retinoids in ocular tissues: Binding proteins, transport, and mechanism of action. In: McDevitt D (ed) Cell biology of the eye. Academic Press, London New YorkGoogle Scholar
  7. 7.
    Chance B (1964) Fluorescence emission of the mitochondrial DPNH as a factor in the ultraviolet sensitivity of visual receptors. Proc Natl Acad Sci USA 51: 359–361PubMedCrossRefGoogle Scholar
  8. 8.
    Chance B, Schoener B (1966) Fluorometric studies of flavin component of the respiratory chain. In: Slater EC (ed) Flavins and flavoprotein. Elsevier, Amsterdam, pp 510–528Google Scholar
  9. 9.
    Dartnall HJA (ed) (1972) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. 10.
    Dratz EA, Hargrave PA (1983) The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem Sci 8: 128–131CrossRefGoogle Scholar
  11. 11.
    Franceschini N, Stavenga DG (1981) The ultraviolet sensitizing pigment of flies studied by in vivo microspectrofluorometry. Invest Ophthalmol Vis Sei Suppl 20:no 3, 111Google Scholar
  12. 12.
    Franceschini N, Kirschfeld K, Minke B (1981a) Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264–1267PubMedCrossRefGoogle Scholar
  13. 13.
    Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981b) Sexual dimorphism in a photoreceptor. Nature (London) 291: 241–244CrossRefGoogle Scholar
  14. 14.
    Gogala M, Hamdorf K, Schwemer J (1970) UV-Sehfarbstoff bei Insekten. Z Vergl Physiol 70: 410–413CrossRefGoogle Scholar
  15. 15.
    Ham WT Jr, Mueller HA, Sliney DH (1976) Retinal sensitivity to damage from short wavelength light. Nature (London) 153–155Google Scholar
  16. 16.
    Ham WT Jr, Mueller HA, Ruffolo JJ Jr (1980) Solar retinopathy as a function of wavelength: its significance for protective eyewear. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York, pp 319–346Google Scholar
  17. 17.
    Hamdorf K (1979) The physiology of invertebrate visual pigments. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 145–224Google Scholar
  18. 18.
    Hamdorf K, Schwemer J (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin Heidelberg New York, pp 720–746Google Scholar
  19. 19.
    Hara T, Hara R (1972) Cephalopod retinochrome. In: Dartnall HJA (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 720–746Google Scholar
  20. 20.
    Hara T, Hara R (1982) Cephalopod retinochrome. In: Packer L (ed) Methods in enzymology, vol 81. Biomembranes, part HI, pp 827–834Google Scholar
  21. 21.
    Hardie RC, Kirschfeld K (1983) Ultraviolet sensitivity of fly photoreceptors R7 and R8: Evidence for a sensitising function. Biophys Struct Mech 9: 171–180CrossRefGoogle Scholar
  22. 22.
    Hargrave PA, McDowell JH, Curtis DR, Wang JK, Juszczak E, Fong S-L, Rao JKM, Argos P (1983) The structure of bovine rhodopsin. Biophys Struct Mech 9: 235–244PubMedCrossRefGoogle Scholar
  23. 23.
    Kirschfeld K (1981) Carotenoid pigments: Their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc R Soc London Ser B 216: 71–85CrossRefGoogle Scholar
  24. 24.
    Kirschfeld K, Franceschini N, Minke B (1977) Evidence for a sensitising pigment in fly photoreceptors. Nature (London) 269: 386–390CrossRefGoogle Scholar
  25. 25.
    Kirschfeld K, Feiler R, Franceschini N (1978) A photostable pigment within the rhabdomere of fly photoreceptors no R7. J Comp Physiol 125: 275–284CrossRefGoogle Scholar
  26. 26.
    Kruizinga B, Kamman R, Stavenga DG (1982) Laser induced visual pigment conversions in fly photoreceptors measured in vivo. Biophys Struct Mech 9: 299–307CrossRefGoogle Scholar
  27. 27.
    Laing RA, Fischbarg J, Chance B (1980) Non-invasive measurements of pyridinenucleotide fluorescence from the cornea. Invest Ophthalmol Vis Sci 19: 96–102PubMedGoogle Scholar
  28. 28.
    Lerman S (1980) Radiant energy and the eye. Macmillan, New YorkGoogle Scholar
  29. 29.
    Liebman PA, Leigh RA (1969) Autofluorescence of visual receptors. Nature (London) 221: 1249–1251CrossRefGoogle Scholar
  30. 30.
    Lythgoe JN (1979) The ecology of vision. Clarendon, OxfordGoogle Scholar
  31. 31.
    Miller WH (1979) Ocular optical filtering. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 69–143Google Scholar
  32. 32.
    Miller GV, Itoku KA, Fleischer AB, Stark WS (1982) Damaging effects of UV treatment in normal and vitamin A deprived Drosophila eyes. Invest Ophthalmol Vis Sci Suppl 22: 66Google Scholar
  33. 33.
    Müntz WRA (1972) Inert absorbing and reflecting pigments. In: Dartnall HJA (ed) Handbook of sensory physiology, vol VII/1. Springer, Berlin Heidelberg New York, pp 529–565Google Scholar
  34. 34.
    Ovchinnikov YA, Abdulaev NG, Feigina MY, Artamov ID, Zolotarev AS, Kostina MB, Bogachuk AS, Miroshnikov AI, Martinov VI, Kudelin AB (1982) The complete amino acid sequence of visual rhodopsin. Bioorg Khim 8: 1011–1014Google Scholar
  35. 35.
    Pepe IM, Cugnoli C (1980) Isolation and characterization of a water soluble photopigment from honeybee compound eye. Vison Res 20: 97–102CrossRefGoogle Scholar
  36. 36.
    Pepe IM, Schwemer J, Paulsen R (1982) Characteristics of retinal-binding proteins from the honeybee retina. Vision Res 22: 775–781PubMedCrossRefGoogle Scholar
  37. 37.
    Rodieck RW (1973) The vertebrate retina. Freeman, San FranciscoGoogle Scholar
  38. 38.
    Ruddock KH (1972) Light transmission through the media and macular pigment and its significance for psychophysical investigation. In: Jameson D, Hurvich LM (eds) Handbook of sensory physiology, vol VII/4. Springer, Berlin Heidelberg New York, pp 455–469Google Scholar
  39. 39.
    Sarkar HK, Song P-S (1982) Blue light induced phototransformation of phytochrome in the presence of flavin. Photochem Photobiol 35: 234–246Google Scholar
  40. 40.
    Schmidt W (1980) Physiological blue light reception. In: Hemmerich P (ed) Structure and bonding, vol 41. Molecular structure and sensory physiology. Springer, Berlin Heidelberg New York, pp 1–44Google Scholar
  41. 41.
    Scholz R, Thurman RG, Williamson JR, Chance B, Bücher T (1969) Flavin and pyridine nucleotide oxidation - reduction changes in perfused rat liver. I. Anoxia and subcellular localization of fluorescent flavoproteins. J Biol Chem 9: 2317–2324Google Scholar
  42. 42.
    Schwemer J (1979) Molekulare Grundlagen der Photorezeption bei der Schmeißfliege Calliphora erythrocephala Meig. Habilitationsschr, Ruhr Univ, BochumGoogle Scholar
  43. 43.
    Schwemer J (1983) Pathways of visual pigment regeneration in fly photoreceptor cells. Biophys Struct Mech 9: 287–298CrossRefGoogle Scholar
  44. 44.
    Sickel W (1972) Retinal metabolism in dark and light. In: Fuortes MGF (ed) Handbook of sensory physiology, vol VII/2. Springer, Berlin Heidelberg New York, pp 667–727Google Scholar
  45. 45.
    Sickel W (1973) Energy in vertebrate photoreceptor function. In: Langer H (ed) Biochemistry and physiology of visual pigments. Springer, Berlin Heidelberg New York, pp 195–203Google Scholar
  46. 46.
    Sliney DH, Freasier BC (1973) Evaluation of optical radiation hazards. Appl Opt 12: 1–24PubMedCrossRefGoogle Scholar
  47. 47.
    Somiya H (1982) “Yellow lens” eyes of a stomiatoid deep-sea fish Malacosteus niger. Proc R Soc London Ser B 215:481–489Google Scholar
  48. 48.
    Sperling HG (1980) Prolonged intense spectral light effects on rhesus retina. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York, pp 195–241Google Scholar
  49. 49.
    Stark WS, Stavenga DG, Kruizinga B (1979) Fly photoreceptor fluorescence is related to UV sensitivity. Nature (London) 280: 581–583CrossRefGoogle Scholar
  50. 50.
    Stark WS, Itoku KA, Srivastava K, Carlson SD (1983) Retinal degeneration induced by intense UV and blue stimuli in Drosophila. Photochem Photobiol Suppl 37:S 84Google Scholar
  51. 51.
    Stavenga DG (1980) Short wavelength light in invertebrate visual sense cells - Pigments, potentials and problems. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 5–24CrossRefGoogle Scholar
  52. 52.
    Stavenga DG, Franceschini N (1981) Fly visual pigment states, rhodopsin R490, metarhodopsins M and M′, studied by transmission and fluorescence microspectrophotometry in vivo. Invest Ophthalmol Vis Sci Suppl 20: no 3, 111Google Scholar
  53. 53.
    Stavenga DG, Schwemer J (1984) Visual pigments of invertebrates. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 5–61Google Scholar
  54. 54.
    Stavenga DG, Tinbergen J (1983) Light dependence of oxidative metabolism in fly compound eyes studied in vivo by microspectrofluorometry. Naturwissenschaften 70: 618–620CrossRefGoogle Scholar
  55. 55.
    Stavenga DG, Bernard GD, Chappell RL, Wilson M (1979) Insect pupil mechanisms III. On the pigment migration in dragonfly ocelli. J Comp Physiol 129: 199–205CrossRefGoogle Scholar
  56. 56.
    Stavenga DG, Franceschini N, Kirschfeld K (1984) Fluorescence of housefly visual pigment. Photochem Photobiol, in pressGoogle Scholar
  57. 57.
    Straiten WP, Ogden TE (1971) Spectral sensitivity of the barnacle Balanus. J Gen Physiol 57: 435–447CrossRefGoogle Scholar
  58. 58.
    Vogt K (1983) Is the fly visual pigment a rhodopsin? Z Naturforsch 38c: 329–333Google Scholar
  59. 59.
    Vogt K, Kirschfeld K (1982) Sensitising pigment in the fly. Biophys Struct Mech 9: 319–328CrossRefGoogle Scholar
  60. 60.
    White RH, Gifford D, Michaud NA (1980) Turnover of photoreceptor membrane in the larval mosquito ocellus: rhabdomeric coated vesicles and organelles of the vacuolar system. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York, pp 271–296Google Scholar
  61. 61.
    Woodhouse JM, Campbell FW (1975) The role of the pupil light reflex in aiding adaptation to the dark. Vision Res 15: 649–653PubMedCrossRefGoogle Scholar
  62. 62.
    Wyszecki G, Stiles WS (1976) Color science: concepts and methods, quantitative data and formulas. Wiley, New YorkGoogle Scholar
  63. 63.
    Yoshizawa T, Shichida Y (1982) Low temperature spectrophotometry of intermediates of rho- dopsin. In: Packer L (ed) Methods in enzymology, vol 81. Biomembranes, part HI. Academic Press, London New York, pp 333–353Google Scholar
  64. 64.
    Stark WS, Tan EWP (1982) Ultraviolet light: photosensitivity and other effects on the visual system. Photochem Photobiol 36: 371–380PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • D. G. Stavenga
    • 1
  1. 1.Biophysics DepartmentRijksuniversiteit GroningenThe Netherlands

Personalised recommendations