Skip to main content

Evolution of Sex Chromosomes and Heterogametic Systems in Amphibia

  • Chapter
Mechanisms of Gonadal Differentiation in Vertebrates

Abstract

The Amphibia in existence today are classified into three orders (Apoda, Urodela, and Anura), about 28 families, approximately 320 genera, and 3,000 species. The Apoda (caecilians, 160 species) occur exclusively in the tropical zones of America, Africa, and Asia; the Urodela (salamanders and newts, 350 species) are restricted to the temperate and subtropical regions of the northern hemisphere. In contrast to this, the Anura (frogs and toads, 2,500 species) are almost ubiquitous [48]. According to the current view of vertebrate evolution, the Amphibia originated from crossopterygian fishes in the late Devonian period 280 million years ago [36, 38].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailly S (1976) Localisation et signification des zones Q obser-vées sur les chromosomes mitotiques de l’amphibien Pleurodeles wait Hi Michah. après coloration par 1a moutarde de quinacrine. Chromosoma 54:61–68.

    Article  PubMed  CAS  Google Scholar 

  2. Bailly S, Guillemin C, Labrousse M (1973) Comparaison du nombre et de 1a position des zones spécifiques révelées sur les chromosomes mitotiques de l’amphibien urodele Pleurodeles wait Hi Michah. par les techniques de coloration au colorant de Giemsa et à 1a moutarde de quinacrine. C R Acad Sci [D] (Paris) 276:1867–1869.

    Google Scholar 

  3. Beçak W, Beçak ML, Nazareth HRS, Ohno S (1964) Close karyological kinship between the reptilian suborder Serpentes and the class Aves. Chromosoma 15:606–617.

    Article  PubMed  Google Scholar 

  4. Biedermann BM, Florence D, Lin CC (1980) Cytogenetic analysis of great horned owls (Bubo virginianus). Cytogenet Cell Genet 28:79–86.

    Article  Google Scholar 

  5. Chang CY, Witschi E (1955) Breeding of sex-reversed males of Xenopus laevis Daudin. Proc Soc Exptl Biol Med 89:150–152.

    CAS  Google Scholar 

  6. Chang CY, Witschi E (1956) Gene control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exptl Biol Med 93:140–144.

    CAS  Google Scholar 

  7. Chen TR, Ebeling AW (1968) Karyological evidence of female heterogamety in the mosquito fish Gambusia affinis (Baird and Girard). Copeia 1:70–75.

    Article  Google Scholar 

  8. Engel W, Schmid M (1981) H-Y antigen as a tool for the determination of the heterogametic sex in Amphibia. Cytogenet Cell Genet 30:130–136.

    Article  PubMed  CAS  Google Scholar 

  9. Gallien L (1953) Inversion totale du sexe chez Xenopus laevis Daud. á 1a suite d’un traitement gynogéne par 1e benzoate d’oestradiol administré pendant 1a vie larvaire. C R Acad Sci [D] (Paris) 237:1565–1566.

    CAS  Google Scholar 

  10. Gallien L (1954) Démonstration d l’homogamétie du sexe mâle chez 1e Triton Pleurodeles waltlii Michah. par l’etude de 1a descendance d’animaux à sexe physiologique inversé, après un traitement hormonal gynogène (benzoate d’oestradiol). C R Acad Sci [D] (Paris) 238:402–404.

    CAS  Google Scholar 

  11. Gallien L (1954) Inversion expérimental du sexe, sous l’action des hormones sexuelles, chez 1e Triton Pleurodeles waltlii. Analyse des conséquences génétiques. Bull Biol France Belg 88:1–51.

    Google Scholar 

  12. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37–50.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu TC, Benirschke K (1971-75) Chromosome atlas: fish, amphibians, reptiles, and birds, vols 1–3. Springer, Berlin Heidelberg New York.

    Google Scholar 

  14. Hsu TC, Spirito SE, Pardue ML (1975) Distribution of 18 + 28S ribosomal genes in mammalian genomes. Chromosoma 53:25–36.

    Article  PubMed  CAS  Google Scholar 

  15. Humphrey RR (1942) Sex of the offspring fathered by two Amblystoma females experimentally converted into males. Anat Rec 82 Suppl 77:469.

    Google Scholar 

  16. Humphrey RR (1945) Sex determination in ambystomid salamanders: a study of the progeny of females experimentally converted into males. Am J Anat 76:33–66.

    Article  Google Scholar 

  17. Humphrey RR (1957) Male homogamety in the Mexican axolotl: a study of the progeny obtained when germ cells of a genetic male are incorporated in a developing ovary. J Exptl Zool 134: 91–101.

    Article  CAS  Google Scholar 

  18. Iturra P, Veloso A (1981) Evidence for heteromorphic sex chromosomes in male amphibians (Anura: Leptodactylidae). Cytogenet Cell Genet 31:108–110.

    Article  PubMed  CAS  Google Scholar 

  19. Kawamura T, Nishioka M (1977) Aspects of the reproductive biology of Japanese anurans. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Plenum Publishing Corporation, New York London, p 103–139.

    Google Scholar 

  20. Kezer J, Macgregor HC (1971) A fresh look at meiosis and centromeric heterochromatin in the red-backed salamander, Plethodon c. cinereus (Green). Chromosoma 33:146–166.

    Article  PubMed  CAS  Google Scholar 

  21. Labrousse M, Guillemin C, Gallien L (1972) Mise en évidence, sur les chromosomes de l’amphibien Pleurodeles waltlii Michah. de secteurs d’affinité différente pour 1e colorant de Giemsa à pH 9. C R Acad Sci [D] (Paris) 274:1063–1065.

    CAS  Google Scholar 

  22. Lacroix J-C (1968) Étude descriptive des chromosomes en écou-villon dans 1e genre Pleurodeles (Amphibien, urodèle). Ann Embryol Morphog 1:179–202.

    Google Scholar 

  23. Lacroix J-C (1968) Variations expérimentales ou spontanées de 1a morphologie et de l’organisation des chromosomes en écouvillon dans 1e genre Pleurodeles (Amphibien, urodèle). Ann Embryol Morphog 1:205–248.

    Google Scholar 

  24. Lacroix J-C (1970) Mise en évidence sur les chromosomes en écouvillon de Pleurodeles poireti Gervais, amphibien urodèle, d’une structure liée au sexe, identifiant 1e bivalent sexual et marquant 1e chromosome W. C R Acad Sci [D] (Paris) 271:102–104.

    CAS  Google Scholar 

  25. León PE, Kezer J (1978) Localization of 5S RNA genes on chromosomes of plethodontid salamanders. Chromosoma 65:213–230.

    Article  Google Scholar 

  26. Macgregor HC, Horner HA (1980) Heteromorphism for chromosome I, a requirement for normal development in crested newts. Chromosoma 76:111–122.

    Article  Google Scholar 

  27. Mancino G (1965) Osservazioni cariologiche sull’ Urodelo della Sardegna Euproctus platycephalus: morfologia dei bivalenti meiotici e dei lampbrush chromosomes. Rend Acc Naz Lincei 39:540–548.

    Google Scholar 

  28. Mancino G, Ragghianti M, Bucci-Innocenti S (1977) Cytotax-onomy and cytogenetics in European newt species. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Plenum Publishing Corporaton, New York London, p 411–447.

    Google Scholar 

  29. Matthey R (1951) The chromosomes of the vertebrates. Advan Genet 4:159–180.

    Article  CAS  Google Scholar 

  30. Morescalchi A (1971) Comparative karyology of the Amphibia. Boll Zool 38:317–320.

    Article  Google Scholar 

  31. Morescalchi A (1973) Amphibia. In: Chiarelli AB, Capanna E (eds) Cytotaxonomy and vertebrate evolution. Academic Press, London New York, p 233–348.

    Google Scholar 

  32. Morescalchi A (1975) Chromosome evolution in the caudate Amphibia. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary biology, vol 8. Plenum Press, New York, p 338–387.

    Google Scholar 

  33. Morescalchi A (1979) New developments in vertebrate cytotaxonomy. I. Cytotaxonomy of the amphibians. Genetica 50:179–193.

    Article  Google Scholar 

  34. Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin Heidelberg New York.

    Google Scholar 

  35. Ray-Chauduri SP, Singh L, Sharma T (1971) Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma 33:239–251.

    Google Scholar 

  36. Romer AS (1966) Vertebrate palaeontology. University of Chicago Press, New York.

    Google Scholar 

  37. Schempp W, Schmid M (1981) Chromosome banding in Amphibia. VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma 83:697–710.

    Article  PubMed  CAS  Google Scholar 

  38. Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic Press, New York.

    Google Scholar 

  39. Schmid M (1980) Chromosome evolution in Amphibia. In: Müller H (ed) Cytogenetics of vertebrates. Birkhäuser, Basel Boston Stuttgart, p 4–27.

    Google Scholar 

  40. Schmid M (1980) Chromosome banding in Amphibia. V. Highly differentiated ZW/ZZ sex chromosomes and exceptional genome size in Pyxicephalus adspersus (Anura, Ranidae). Chro-mosoma 80:69–96.

    CAS  Google Scholar 

  41. Schmid M, Bachmann K (1981) A frog with highly evolved sex chromosomes. Experientia 37:243–244.

    Article  PubMed  CAS  Google Scholar 

  42. Schmid M, Olert J, Klett C (1979) Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosoma 71:29–55.

    Article  Google Scholar 

  43. Sessions SK (1980) Evidence for a highly differentiated sex chromosome heteromorphism in the salamander Necturus ma-culosus (Rafinesque). Chromosoma 77:157–168.

    Article  Google Scholar 

  44. Seto T, Pomerat CM, Kezer J (1964) The chromosomes of Necturus maculosus as revealed in cultures of leucocytes. Am Naturalist 98:71–78.

    Article  Google Scholar 

  45. Singh L (1974) Present status of sex chromosomes in amphibians. Nucleus 17:17–27.

    Google Scholar 

  46. Singh L, Purdom IF, Jones KW (1976) Satellite DNA and evolution of sex chromosomes. Chromosoma 59:43–62.

    Article  PubMed  CAS  Google Scholar 

  47. Witschi E (1923) Ergebnisse der neueren Arbeiten über die Geschlechtsprobleme bei Amphibien. Z ind Abst Vererb 31:287–312.

    Article  Google Scholar 

  48. Ziswiler V (1976) Die Wirbeltiere, vol 1. Thieme, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid, M. (1983). Evolution of Sex Chromosomes and Heterogametic Systems in Amphibia. In: Mechanisms of Gonadal Differentiation in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69150-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69150-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-12480-1

  • Online ISBN: 978-3-642-69150-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics