Skip to main content
Log in

Chromosome banding in amphibia

VI. BrdU-replication patterns in anura and demonstration of XX/XY sex chromosomes in Rana esculenta

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

A modified BrdU-Hoechst-Giemsa technique permitted the demonstration of easily reproducible replication patterns in the somatic chromosomes of Amphibia. These banding patterns allow for the first time a precise identification of all chromosomes and the analysis of the patterns of replication in the various stages of S-phase in Amphibia. Several possibilities for the use of this technique were demonstrated on three frog species of the family Ranidae, all differing greatly in their DNA-content. With this method, the homomorphic chromosome pair No. 4 in Rana esculenta could be identified as sex-specific chromosomes of the XX/XY-type. All male animals exhibit an extremely late replicating region in the Y-chromosome, which is lacking in the X-chromosome; in the female animals, both X-chromosomes replicate synchronously. These sex-specific chromosomes cannot be distinguished by other banding techniques. In the highly heteromorphic ZZ/ZW-sex chromosome system of Pyxicephalus adspersus a synchronous replication of the two Z-chromosomes of male animals and a very late replication of the short arm of the W-chromosome of female animals was demonstrated. These results support the assumption that there is no dosage compensation for Z-linked or X-linked genes by the sex chromosome inactivation mechanism in the sex chromosomes of Amphibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J.W., Latt, S.A.: Analysis of sister chromatid exchange formation in vivo in mouse spermatogonia as a new test system for environmental mutagens. Nature (Lond.) 260, 449–451 (1976a)

    Google Scholar 

  • Allen, J.W., Latt, S.A.: In vivo BrdU-33258 Hoechst analysis of DNA replication kinetics and sister chromatid exchange formation in mouse somatic and meiotic cells. Chromosoma (Berl.) 58, 325–340 (1976b)

    Google Scholar 

  • Berger, L.: Morphology of the F1 generation of various crosses within Rana esculenta complex. Acta Zool. Cracov 3, 301–324 (1968)

    Google Scholar 

  • Bianchi, N.O., Bianchi, M.S., Vidal-Rioja, L.: Heterochromatin late replication and secondary constrictions in the chromosome complement of Leptodactylus ocellatus. Caryologia (Firenze) 26, 397–403 (1973)

    Google Scholar 

  • Bianchi, N.O., Molina, J.O.: DNA replication patterns in somatic chromosomes of Leptodactylus ocellatus (Amphibia, Anura). Chromosoma (Berl.) 22, 391–400 (1967)

    Google Scholar 

  • Biedermann, B.M., Florence, D., Lin, C.C.: Cytogenetic analysis of great horned owls (Bubo virginianus). Cytogenet. Cell Genet. 28, 79–86 (1980)

    Google Scholar 

  • Giorgi, F., Galleni, L.: The lampbrush chromosomes of Rana esculenta L. (Amphibia, Anura). Caryologia (Firenze) 25, 107–123 (1972)

    Google Scholar 

  • King, M.: C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma (Berl.) 80, 191–217 (1980)

    Google Scholar 

  • Latt, S.A.: Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. nat. Acad. Sci. (Wash.) 70, 3395–3399 (1973)

    Google Scholar 

  • Macgregor, H.C., Horner, H.: Heteromorphism for chromosome 1, a requirement for normal development in crested newts. Chromosoma (Berl.) 76, 111–122 (1980)

    Google Scholar 

  • Morescalchi, A.: Amphibia. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Capanna, eds.), pp. 233–348. London-New York: Academic Press 1973

    Google Scholar 

  • Morescalchi, A., Filosa, S.: Osservazioni sui cromosomi piumosi di Rana esculenta L. Atti. Soc. Peloritana Sc. fis. mat. nat. 11, 211–219 (1965)

    Google Scholar 

  • Ohno, S.: Sex chromosomes and sex-linked genes. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Ragghianti, M., Bucci-Innocenti, S., Mancino, G.: Bandeggiatura indotta da “C-, G-e Q-staining methods” e pattern di replicazione dei cromosomi di Trituras. Rend. Acc. Naz. Lincei, Ser. VIII, 55, 764–770 (1973)

    Google Scholar 

  • Ruiz, I.R.G., Soma, M., Beçak, W.: Nucleolar organizer regions and constitutive heterochromatin in polyploid species of the genus Odontophrynus (Amphibia, Anura). Cytogenet. Cell Genet. 29, 84–98 (1981)

    Google Scholar 

  • Schmid, M.: Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma (Berl.) 66, 361–388 (1978a)

    Google Scholar 

  • Schmid, M.: Chromosome banding in Amphibia. II. Constitutive heterochromatin and nucleolus organizer regions in Ranidae, Microhylidae and Rhacophoridae. Chromosoma (Berl.) 68, 131–148 (1978b)

    Google Scholar 

  • Schmid, M.: Chromosome banding in Amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Chromosoma (Berl.) 77, 83–103 (1980a)

    Google Scholar 

  • Schmid, M.: Chromosome banding in Amphibia. V. Highly differentiated ZW/ZZ sex chromosomes and exceptional genome size in Pyxicephalus adspersus (Anura, Ranidae). Chromosoma (Berl.) 80, 69–96 (1980b)

    Google Scholar 

  • Schmid, M., Olert, J., Klett, C.: Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosoma (Berl.) 71, 29–55 (1979)

    Google Scholar 

  • Schmid, W.: DNA replication patterns of the heterochromosomes in Gallus domesticus. Cytogenet. Cell Genet. 1, 344–352 (1962)

    Google Scholar 

  • Singh, L., Purdom, I.F., Jones, K.W.: Satellite DNA and evolution of sex chromosomes. Chromosoma (Berl.) 59, 43–62 (1976)

    Google Scholar 

  • Singh, L., Purdom, I.F., Jones, K.W.: Human chromosomes contain repeated sequences related to sex chromosome associated DNA in snakes, birds, and insects. Cytogenet. Cell Genet. 25, 204 (1979)

    Google Scholar 

  • Tunner, H.G.: Das Albumin und andere Bluteiweiße bei Rana ridibunda Pallas, Rana lessonae Camerano, Rana esculenta Linné und deren Hybriden. Z. Zool. Syst. Evol. Forsch. 11, 219–233 (1973)

    Google Scholar 

  • Tunner, H.G.: Die klonale Struktur einer Wasserfroschpopulation. Z. Zool. Syst. Evol. Forsch. 12, 309–314 (1974)

    Google Scholar 

  • Ullerich, F.-H.: Weitere Untersuchungen über Chromosomenverhältnisse und DNS-Gehalt bei Anuren (Amphibia). Chromosoma (Berl.) 21, 345–368 (1967)

    Google Scholar 

  • Uzzell, T., Günther, R., Berger, L.: Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia, Salientia). Proc. Acad. Nat. Sci. (Philadelphia) 128, 147–171 (1977)

    Google Scholar 

  • Uzzell, T., Hotz, H., Berger, L.: Genome exclusion in gametogenesis by an interspecific Rana hybrid: evidence from electrophoresis of individual oocytes. J. exp. Zool. 214, 251–259 (1980)

    Google Scholar 

  • Vogel, W., Bauknecht, T.: Differential chromatid staining by in vivo treatment as a mutagenicity test system. Nature (Lond.) 260, 448–449 (1976)

    Google Scholar 

  • Wimber, D.E., Prensky, W.: Autoradiography with meiotic chromosomes of the male newt (Triturus viridescens) using H3-thymidine. Genetics 48, 1731–1738 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schempp, W., Schmid, M. Chromosome banding in amphibia. Chromosoma 83, 697–710 (1981). https://doi.org/10.1007/BF00328528

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328528

Keywords

Navigation