Skip to main content

Funktionelle Topographie sensorischer und motorischer Felder

  • Chapter
Cortex Cerebri

Zusammenfassung

Im anatomischen Teil wurde darauf hingewiesen, daß jedes Areal der Hirnrinde afferente Fasern aus einem, eventuell auch mehreren spezifischen thalamischen Projektionskernen empfängt. Diese thalamo-corticale Projektion ist topographisch geordnet, indem jedem Punkt im Cortex ein umschriebenes Volumen im Thalamus zugeordnet ist und indem benachbarte Volumina im Thalamus auch im Cortex benachbart sind. „Punktförmige Projektion“ ist eine vereinfachende Idealisierung wegen der wechselseitigen überlappung der thalamischen Fasern innerhalb ihres „modulären“ Verzweigungsgebietes im Cortex (0,5-1mm) (s. Kap. 3). Die Repräsentation der Projektionskerne auf der Hirnrinde wirft topologische Probleme auf, da die thalamischen Kerne dreidimensionale Körper sind, während die Hirnrinde eine zweidimensionale Fläche darstellt. Außerdem sind die thalamischen Projektionsneurone, die auf einen Cortexpunkt projizieren, nicht in kugelförmigen Volumina im Thalamus angeordnet, sondern als elongierte Zapfen, deren lange Achse entweder (wie im Pulvinar/Lat.post.-Komplex) antero-posterior oder mehr vertikal (wie im Corpus geniculatum laterale) ausgerichtet ist. In diesem Abschnitt interessiert jedoch vor allem die funktionelle Topographie dieser Projektionen, also die Frage, in welcher Weise Sinnesorgane oder Funktionen in einem bestimmten thalamo-corticalen Projektionsgebiet ausgebreitet sind. Diese funktionelle Topographie ist für einige corticale Felder weitgehend, für viele jedoch noch nicht ausreichend abgeklärt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Weiterführende Leteratur

  1. Allmann, J.: Evolution of the visual system in the early primates. Progr. Psychobiology and Physiolog. Psychol. (Eds. J.M. Sprague and A.N. Epstein), 7, 1–53 (1977).

    Google Scholar 

  2. Creutzfeldt, O.D.: Repräsentation der visuellen Umwelt im Gehirn. Verh. Dtsch. Zool. Ges. 1979. pp. 5–18, Gustav Fischer Jena Verlag, Stuttgart (1979).

    Google Scholar 

  3. Creutzfeldt, O.D.: Diversification and synthesis of sensory systems across the cortical link. pp. 153–165. In: O. Pompeiano and C. Ajmone-Marsan: Brain mechanisms of perceptual awareness and purposeful behavior. Raven Press, New York (1981).

    Google Scholar 

  4. Kaas, J.H.: Sensory representations in mammals. pp. 65–80. In: G.S. Stent (Edit.): Function and formation of neural systems. Dahlem Konferenzen, Berlin (1977).

    Google Scholar 

  5. Merzenich, M.M. and J.H. Kaas: Principles of organization of sensory perceptual systems in mammals. Progr. in Psychobiol. and Physiological Psychology (Eds. J.M. Sprague and A.N. Epstein) 9, 2–42 (1980).

    Google Scholar 

  6. Woolsey, C.N.: Organization of somatic sensory and motor areas of the cerebral cortex. pp. 63–81. In: H.F. Harlow and C.N. Woolsey (Eds.), Biological and biochemical bases of behavior. Univ. of Wisconsin Press, Madison (1958).

    Google Scholar 

Kapitel 6.3: Der visuelle Cortex

  1. Baumgartner, G.: Physiologie des zentralen Sehsystems. pp. 264–356. In: Gauer, Kramer, Jung (Edit.): Physiologie des Menschen, Bd. 13, Sehen. Urban und Schwarzenberg, München (1980).

    Google Scholar 

  2. Bishop, P.O.: Neurophysiology of binocular single vision and stereopsis. pp. 255–306. In: Jung, R. (Edit.): Central processing of visual information. Handbook of Sensory Physiology, Vol. VII/ 3A. Springer-Verlag, Berlin, Heidelberg, New York (1973).

    Google Scholar 

  3. Bishop, P.O.: Stereopsis and the random element in the organization of the striate cortex. Proc. R. Soc. Lond. B. 204, 415–434 (1979).

    PubMed  CAS  Google Scholar 

  4. Creutzfeldt, O.D.: Repräsentation der visuellen Umwelt im Gehirn. Verh. Dtsch. Zool. Ges. 1979. pp. 5–18. Gustav Fischer Jena Verlag, Stuttgart (1979).

    Google Scholar 

  5. Creutzfeldt, O.D.: Informationsübertragung und -Verarbeitung im Nervensystem. pp. 629–652. In: Hoppe, W. u.a. (Herausg.): Biophysik. 2. Auflage. Springer-Verlag, Berlin, Heidelberg, New York (1981).

    Google Scholar 

  6. Creutzfeldt, O.D. and U. Kuhnt: Electrophysiology and topographical distribution of visual evoked potentials in animals. pp. 595–646. In: R. Jung (Edit.) (6.3/10) (1973).

    Google Scholar 

  7. Ditchburn, R.W.: Eye movements and visual perception. Clarendon Press, Oxford (1973).

    Google Scholar 

  8. Doty, R.W.: Ablation of visual areas in the central nervous system. pp. 483–543. In: R. Jung (Edit.) (6.3/10) (1973).

    Google Scholar 

  9. Davson, H.: Physiology of the eye. 4. Edit. Churchill Livingstone, Edinburgh (1980).

    Google Scholar 

  10. Hubel, D.H. and T.N. Wiesel: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B. 198, 1–59 (1977).

    PubMed  CAS  Google Scholar 

  11. Jung, R. (Edit.): Visual centers in the brain. Handbook of Sensory Physiology Vol. VII/3B, Springer-Verlag, Berlin, Heidelberg, New York (1973).

    Google Scholar 

  12. Polyak, St.: The vertebrate visual system. The University of Chicago Press, Chicago/Ill. (1957).

    Google Scholar 

  13. Trevarthen, C.B.: Two mechanisms of vision in primates. Psychol. Forsch. 31, 299–237 (1968).

    PubMed  CAS  Google Scholar 

  14. Ungerleider, L.G. and M. Mishkin: Two cortical visual systems. In: Ingle, D.J., R.J.W. Mansfield and M.A. Goodale (Edits.): Advances in the analysis of behavior. The MIT Press, Cambridge/ Mass. (1980).

    Google Scholar 

  15. Van Essen, D.C.: Visual areas of the mammalian cerebral cortex. Ann. Rev. Neurosci. 2, 227–263 (1979).

    PubMed  Google Scholar 

B: Einzelarbeiten

  1. Aebersold, H., O.D. Creutzfeldt, U. Kuhnt and D. Sanides: Representation of the visual field in the optic tract and optic chiasma of the cat. Exp. Brain Res. 42, 127–145 (1981).

    PubMed  CAS  Google Scholar 

  2. Albus, K.: A quantitative study of the projection area of the central and paracentral visual field in area 17 of the cat. I. The precision of the topography. II. The spatial organization of the orientation domain. Exp. Brain Res. 24, 159–202 (1975).

    PubMed  CAS  Google Scholar 

  3. Albus, K.: Retinotopes Arrangement und neuronale Morphologie im zentralen visuellen System der Katze (Felis domestica). Physiologische und anatomische Untersuchungen zur funktionellen Anatomie einer sensorischen Repräsentation. Habilitationsarbeit, Göttingen 1982.

    Google Scholar 

  4. Albus, K. and R. Beckmann: Second and third visual areas of the cat: Interindividual variability in retinotopic arrangement and cortical location. J. Physiol. (Lond.) 299, 247–276 (1980).

    CAS  Google Scholar 

  5. Albus, K.: 14C-Deoxyglucose mapping of orientation subunits in the cats visual cortical areas. Exp. Brain Res. 37, 609–613 (1979).

    PubMed  CAS  Google Scholar 

  6. Albus, K. and F. Donate-Oliver: Cells of origine of the occipito-pontine projection in the cat: Functional properties and intracortical location. Exp. Brain Res. 28, 167–174 (1977).

    PubMed  CAS  Google Scholar 

  7. Albus, K., F. Donate-Oliver, D. Sanides and W. Fries: The pontine projections from visual and association cortex of the cat: An experimental study using horseradish peroxidase. J. comp. Neurol. 201, 175–189(1981).

    PubMed  CAS  Google Scholar 

  8. Allmann, J.: Evolution of the visual system in the early primate. Progr. Psychobiol. Physiol. Psychol. 7, 1–53(1977).

    Google Scholar 

  9. Allmann, F.M. and J.H. Kaas: The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Res. 100, 473–487 (1975).

    Google Scholar 

  10. Bauer, R., B.M. Dow and R.G. Vantin: Laminar distribution of preferred orientations in foveal striate cortex of the monkey. Exp. Brain Res. 41, 54–60 (1980).

    PubMed  CAS  Google Scholar 

  11. Bücking, H. and G. Baumgartner: Klinik und Pathophysiologie der initialen neurologischen Symptome bei fokalen Migränen (Migraine ophthalmique, Migraine accompagnée). Arch. Psychiat. Nerv. 219, 37–52 (1974).

    Google Scholar 

  12. Bender, D.B.: Retinotopic organization of the macaque pulvinar. J. Neurophysiol. 46, 672–693 (1981).

    PubMed  CAS  Google Scholar 

  13. Berlucchi, G., J.M. Sprague, A. Antonini and A. Simoni: Learning and interhemispheric transfer of visual pattern discrimination following unilateral suprasylvian lesions in split chiasma cats. Exp. Brain Res. 34, 551–574 (1979).

    PubMed  CAS  Google Scholar 

  14. Berlucchi, G., M.S. Gazzaniga and G. Rizzolatti: Microelectrode analysis of transfer of visual information by the corpus callosum. Arch. Ital. Biol. 105, 583–596 (1975).

    Google Scholar 

  15. Brindley, G.S.: Sensory effects of electrical stimulation of the visual and paravisual cortex. pp. 583–594. In: R. Jung (Edit.) (6.3/10) (1973).

    Google Scholar 

  16. Bjursten, L.-M., K. Norsell and U. Norsell: Behavioral repertory of cats without cerebral cortex from infancy. Exper. Brain Res. 25, 115–130 (1976).

    CAS  Google Scholar 

  17. Choudhury, B.P., D. Whitteridge and M.E. Wilson: The function of the callosal connections of the visual cortex. Quart. J. Exptl. Physiol. 50, 214–219 (1965).

    CAS  Google Scholar 

  18. Cowey, A.: Projection of the retina onto striate and prestriate cortex in the squirrel monkey, Saimiri sciureus. J. Neurophysiol. 27, 366–393 (1964).

    PubMed  CAS  Google Scholar 

  19. Cowey, A.: Cortical maps and visual perception. Quart. J. Experim. Psychol. 31, 1–17 (1979).

    CAS  Google Scholar 

  20. Cowey, A. and E.T. Rolls: Human cortical magnification factor and its relation to visual acuity. Exp. Brain Res. 21, 447–454 (1954).

    Google Scholar 

  21. Creutzfeldt, O.D., R. Guedes, K. Shoumura and S. Watanabe: Clare-Bishop Area: An electro-physiological and anatomical investigation of an “association cortex”. Exp. Brain Res. 41, A 18 (1980).

    Google Scholar 

  22. Creutzfeldt, O.D., G.M. Innocenti and D. Brooks: Neurophysiological experiments on afferent and intrinsic connections in the visual cortex (Area 17). pp. 319–338. In: M. Santini (Edit.): Golgi Centennial Symposion: Perspectives in Neurobiology. Raven Press, New York (1975). Vgl. auch dieselben in Exp. Brain Res. 21, 315–336 (1974).

    Google Scholar 

  23. Creutzfeldt, O.D. and M. Ito: Functional synaptic organization of primary visual cortex neurones in the cat. Exp. Brain Res. 6, 324–352 (1968).

    PubMed  CAS  Google Scholar 

  24. Creutzfeldt, O.D., U. Kuhnt and L.A. Benevento: An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a cooperative neuronal network. Exp. Brain Res. 21, 251–274(1974).

    PubMed  CAS  Google Scholar 

  25. Creutzfeldt, O.D., B.B. Lee and A. Elepfandt: A quantitative study of chromatic organization and receptive fields of cells in the lateral geniculate body of the rhesus monkey. Exp. Brain Res. 35, 527–545(1979).

    PubMed  CAS  Google Scholar 

  26. Creutzfeldt, O.D. and H.C. Nothdurft: Representation of complex visual stimuli in the brain. Naturwissenschaften 65, 307–318 (1978).

    PubMed  CAS  Google Scholar 

  27. Cynader, M. and D. Regan: Neurones in cat parastriate cortex sensitive to the direction of motion in three-dimensional space. J. Physiol. (Lond.) 274, 549–569 (1978).

    CAS  Google Scholar 

  28. Donaldson, I.M.L. and J.R.G. Nash: Interaction between visual cortical areas: the effect of a chronic lesion in area 17 on the properties of area 18 in the cat. J. Physiol. 234, 77P-78P (1973).

    PubMed  CAS  Google Scholar 

  29. Dow, B.M., A.Z. Snyder, R.G. Vautin and R. Bauer: Magnification factor and receptive field size in foveal striate cortex of the monkey. Exp. Brain Res. 44, 213–228 (1981).

    PubMed  CAS  Google Scholar 

  30. Dreher, B. and Cottee, L.J.: Visual receptive field properties of cells in area 18 of cat’s cerebral cortex before and after acute lesions in area 17. J. Neurophysiol. 38, 735–750 (1975).

    PubMed  CAS  Google Scholar 

  31. Evans, J.R., J. Gordon, I. Abramow, M.G. Mladejovsky and W.H. Dobelle: Brightness of phosphenes elicited by electrical stimulation of human visual cortex. Sensory processes 3, 82–94 (1979).

    PubMed  CAS  Google Scholar 

  32. Fischer, B. and R. Bock: Selection of visual targets activates prelunate cortical cells in trained Rhesus monkeys. Exp. Brain Res. 41, 431–433 (1981).

    PubMed  CAS  Google Scholar 

  33. Foerster, O.: Beiträge zur Pathophysiologie der Sehbahn und der Sehsphäre. J. Psychol. Neurol. (Leipzig) 39, 463–485 (1929).

    Google Scholar 

  34. Fries, W.: The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey. Proc. R. Soc. B. 213, 73–80 (1981).

    CAS  Google Scholar 

  35. Gattas, R., E. Oswaldo-Cruz and A.P.B. Sousa: Visuotopic organization of the Cebus pulvinar. A double representation of the contralateral hemifield. Brain Res. 152, 1–16 (1978).

    Google Scholar 

  36. Gilbert, C.D.: Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. 268, 391–421 (1977).

    PubMed  CAS  Google Scholar 

  37. Gilbert, C.D. and J.P. Kelly: The projection of cells in different layers of the cat’s visual cortex. J. comp. Neurol. 163, 81–105 (1975).

    PubMed  CAS  Google Scholar 

  38. Gilbert, Ch.D and T.N. Wiesel: Laminar specialization and intracortical connections in cat primary visual cortex. pp. 163–191 in F.U. Schmitt, F.G. Wordon, G. Adelman and St.G. Dennis (Eds.): The organization of the cerebral cortex. The MIT Press, Cambridge/Mass. (1981).

    Google Scholar 

  39. Godfraind, J.-M., M. Meulders and C. Veraart: Visual properties of neurons in pulvinar, nucleus lateralis posterior and nucleus suprageniculatus thalami in the cat. I. Qualitative investigation. Brain Res. 44, 503–526 (1972).

    PubMed  CAS  Google Scholar 

  40. Graham, J., C.-S. Lin and J.H. Kaas: Subcortical projections of six visual cortical areas in the owl monkey, Aotus trivirgatus. J. comp. Neurol. 187, 557–580 (1979).

    PubMed  CAS  Google Scholar 

  41. Graybiel, A.M. and D.M. Berson: Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5, 115–1238(1980).

    Google Scholar 

  42. Gross, C.G.: Visual functions of infero-temporal cortex. pp. 451–482. In: R. Jung (Edit.) (6.3/10) (1973).

    Google Scholar 

  43. Gouras, P. and J. Krüger: Responses of cells in foveal visual cortex of the monkey to pure color contrast. J. Neurophysiol. 42, 850–860 (1979).

    PubMed  CAS  Google Scholar 

  44. Guedes, R., S. Watanabe and O.D. Creutzfeldt: Functional role of associative fibres for a visual association area: The posterior suprasylvian sulcus of the cat. Exper. Brain Res. 49, 13–27 (1983).

    CAS  Google Scholar 

  45. Guillery, R.W., E.E. Geisert, Jr., E.M. Polley and C.A. Mason: An analysis of the retinal afferents to the cat’s medial interlaminar nucleus and to its rostral thalamic extension, the “geniculate wing”. J. Comp. Neurol. 194, 117–142 (1980).

    PubMed  CAS  Google Scholar 

  46. Hammond, P. and D.M. MacKay: Differential responsiveness of simple and comlex cells in cat striate cortex to visual texture. Exp. Brain Res. 30, 275–296 (1977).

    PubMed  CAS  Google Scholar 

  47. Harvey, A.R.: The afferent connections and laminar distribution of cells in area 18 of the cat. J. Physiol. 302, 483–505 (1980).

    PubMed  CAS  Google Scholar 

  48. Harvey, A.R.: A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. J. Physiol. (Lond.) 302, 507–534 (1980).

    CAS  Google Scholar 

  49. Heggelund, P. and K. Albus: Response variability and orientation discrimination of single cells in striate cortex of cat. Exp. Brain Res. 32, 197–211 (1978).

    PubMed  CAS  Google Scholar 

  50. Henry, G.H.: Receptive field classes of cells in the striate cortex of the cat. Brain Res. 133, 1–28 (1977).

    PubMed  CAS  Google Scholar 

  51. Hoffmann, K.-P. and J. Stone: Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 32, 460–466 (1971).

    Google Scholar 

  52. Hubel, D.H. and T.N. Wiesel: Receptive fields binocular interaction and functional architecture in the cats visual cortex. J. Physiol. 160, 106–154 (1962).

    PubMed  CAS  Google Scholar 

  53. Hubel, D.H. and T.N. Wiesel: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195, 215–243 (1968).

    PubMed  CAS  Google Scholar 

  54. Hubel, D.H. and T.N. Wiesel: Sequences, regularity and geometry of orientation columns in the monkey striate cortex. J. comp. Neurol. 158, 267–274 (1974).

    PubMed  CAS  Google Scholar 

  55. Hubel, D.H. and T.N. Wiesel: Uniformity of monkey striate cortex: A parallel relationship between size, scatter and magnification factor. J. comp. Neurol. 158, 295–306 (1974).

    PubMed  CAS  Google Scholar 

  56. Hubel, D.H., T.N. Wiesel and M.P. Stryker: Anatomical demonstration of orientation columns in macaque monkey. J. comp. Neurol. 177, 361–380 (1978).

    PubMed  CAS  Google Scholar 

  57. Humphrey, N.K.: Vision in monkey without striate cortex: a case study. Perception 3, 241–255 (1974).

    PubMed  CAS  Google Scholar 

  58. Innocenti, G.: The primary visual pathway through the corpus callosum: Morphological and functional aspects in the cat. Arch. ital. Biol. 118, 124–188 (1980)

    PubMed  CAS  Google Scholar 

  59. Ito, M., D. Sanides and O.D. Creutzfeldt: A study of binocular convergence in cat visual cortex neurons. Exp. Brain Res. 28, 21–35 (1977).

    PubMed  CAS  Google Scholar 

  60. Iwai, E., M. Ynkie, Y. Umitsu, S. Kido and T. Niihara: Geniculo-prestriate projection in the macaque monkey. Exp. Brain Res. 41, A19-A20 (1980).

    Google Scholar 

  61. Jones, E.G.: The anatomy of extrageniculo-striato visual mechanisms. pp. 215–227. In: F.O. Schmitt and F.G. Warden (Eds.): The Neurosciences, 3. Study Program. MIT Press, Cambridge/ Mass. (1974).

    Google Scholar 

  62. Jung, R. and L. Spillmann: Receptive field estimation and perceptual integration in human vision. pp. 181–197. In: Young, F.A. and D.B. Lindsley (Eds.): Early experience and visual information processing in perceptual and reading disorders. Nat. Acad. Sci., Washington (1970).

    Google Scholar 

  63. Kaas, J.H.: Sensory representations in mammals. pp. 65–80. In: G.S. Stent (Edit.): Function and formation of neural systems. Dahlem Konferenzen, Berlin (1977).

    Google Scholar 

  64. Kuypers, H.J.M., M.K. Szwarcbart, M. Mishkin and H.E. Rosvold: Occipitotemporal corticocortical connections in the rhesus monkey. Exper. Neurol. 11, 245–262 (1965).

    CAS  Google Scholar 

  65. Lee, B., B. Cleland and O.D. Creutzfeldt: The retinal input to the cells in area 17 of the cat’s cortex. Exp. Brain Res. 30, 527–538 (1977).

    PubMed  CAS  Google Scholar 

  66. Lee, B.B., K. Albus, P. Heggelund, M.J. Hulme and O.D. Creutzfeldt: The depth distribution of optimal stimulus orientations for neurons in cat area 17. Exp. Brain Res. 27, 301–314 (1977).

    PubMed  CAS  Google Scholar 

  67. Lin, C.-S. and J.H. Kaas: The inferior pulvinar complex in the owl monkeys: Architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex. J. comp. Neurol. 187, 655–678 (1978).

    Google Scholar 

  68. Lin, C.-S. and J.H. Kaas: Projections from the medial nucleus of the inferior pulvinar complex to the middle temporal area of the visual cortex. Neuroscience 5, 2218–2219 (1980).

    Google Scholar 

  69. Marquis, D.G.: Effects of removal of the visual cortex in mammals, with observations on the retention of light discrimination in dogs. Res. Publ. Ass. nerv. ment. Dis. 13, 558–592 (1934).

    Google Scholar 

  70. McIlwain, J.T.: Large receptive fields and spatial transformations in the visual system. Intern. Rev. of Physiol., Neurophysiology II, 10, 224–248 (1976).

    Google Scholar 

  71. Le Vay, S. and H. Sherk: The visual claustrum of the cat. Part I–III. J. Neurosci. 1, 956–1005 (1981).

    Google Scholar 

  72. Mason, R.: Functional organization in the cat’s pulvinar complex. Exp. Brain Res. 31, 51–66 (1978).

    PubMed  CAS  Google Scholar 

  73. Mishkin, M.: Cortical visual areas and their interaction. pp. 187–208. In: Karczmar, A.G. and J.C. Eccles (Edit.): Brain and Human Behavior. Springer-Verlag, Berlin, Heidelberg, New York (1972).

    Google Scholar 

  74. Michael, C.R.: Color vision mechanisms in monkey striate cortex: I: Simple cells with dual opponent-color receptive fields. II: color sensitive complex cells in monkey striate cortex. J. Neurophysiol. 41, 1233–1266(1978).

    PubMed  CAS  Google Scholar 

  75. Michael, C.R.: Columnar organization of color cells in monkey’s striate cortex. J. Neurophysiol. 3, 587–604(1981).

    Google Scholar 

  76. Meadows, J.C.: Disturbed perception of colours associated with localized cerebral lesions. Brain 97, 615–632(1974).

    PubMed  CAS  Google Scholar 

  77. Mizuno, N., K. Itoh, K. Uchida, M. Uemura-Sumi and R. Matsushima: A retino-pulvinar projection in the macaque monkey as visualized by the use of anterograde transport of horseradish peroxidase. Neuroscience letters 30, 199–203 (1982).

    PubMed  CAS  Google Scholar 

  78. Mucke, L., M. Norita, G. Benedek and O.D. Creutzfeldt: Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Exp. Brain Res. 46, 1–11 (1982).

    PubMed  CAS  Google Scholar 

  79. Mucke, L.: Die topographische Repräsentation der visuellen Umwelt im Claustrum dorsale der Katze und Reaktionen claustraler Neurone auf visuelle Reizung. Med. Doktorarbeit Göttingen (1982).

    Google Scholar 

  80. Newsome, W.T. and J.M. Allmann: Interhemispheric connections of visual cortex in owl monkey (Aotus trivirgatus), and the bushbaby (Galago senegalensis). J. Comp. Neurol. 194, 209–233 (1980).

    PubMed  CAS  Google Scholar 

  81. Niimi, K., H. Matsuoka, Y. Yamazaki and H. Mutsumoto: Thalamic afferents to the visual cortex in the cat studied by retrograde transport of horsereddish peroxidase. Brain Behav. Evol. 18, 114–139(1981).

    PubMed  CAS  Google Scholar 

  82. Noda, H., R.B. Freeman, B. Gies and O.D. Creutzfeldt: Neuronal responses in the visual cortex of awake cats to stationary and moving targets. Exp. Brain Res. 12, 389–405 (1971).

    Google Scholar 

  83. Noda, H., O.D. Creutzfeldt and R.B. Freeman: Binocular interaction in the visual cortex of awake cats. Exp. Brain Res. 12, 406–421 (1971).

    Google Scholar 

  84. Palmer, L.A., A.C. Rosenquist and R.J. Tusa: The retino-topic organization of lateral suprasylvian visual areas in the cat. J. comp. par. Neurol. 177, 237–256 (1978).

    CAS  Google Scholar 

  85. Perenin, M.T. and E. Vadot: Macular sparing investigated by means of Haidinger brushes. Brit. J. Ophthalmol. 65, 429–435 (1981).

    CAS  Google Scholar 

  86. Pöppel, E., R. Held, D. Frost: Residual visual functions after brain wounds involving the central visual pathways in man. Nature 243, 295–296 (1973).

    PubMed  Google Scholar 

  87. Poggio, G.F. and B. Fischer: Binocular interaction and depth sensitivity of striate and prestriate cortical neurons of the behaving monkey. J. Neurophysiol. 40, 1392–1405 (1977).

    PubMed  CAS  Google Scholar 

  88. Poggio, G.F. and W.H. Talbot: Mechanisms of static and dynamic stereopsis in foveal cortex of the rhesus monkey. J. Physiol. 315, 469–492 (1981).

    PubMed  CAS  Google Scholar 

  89. Raczkowski, D. amd I.T. Diamond: Projections from the superior colliculus and the neocortex to the pulvinar nucleus in Galago. J. comp. Neurol. 200, 231–254(1981).

    PubMed  CAS  Google Scholar 

  90. Rezak, M. and L.A. Benevento: A comparison of the organization of the projections of the dorsal lateral geniculate nucleus, the inferior pulvinar and adjacent lateral pulvinar to primary visual cortex (Area 17) in the macaque monkey. Brain Res. 167, 19–40 (1979).

    PubMed  CAS  Google Scholar 

  91. Rolls, E.T. and A. Cowey: Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp. Brain Res. 10, 298–310 (1970).

    PubMed  CAS  Google Scholar 

  92. Sanderson, K.J.: The projection of the visual field to the lateral geniculate and medial intralaminar nuclei in the cat. J. Comp. Neurol. 143, 101–118, and Exp. Brain Res. 13, 159–177(1971).

    PubMed  CAS  Google Scholar 

  93. Sanides, D.: The retinotopic distribution of visual callosal projections in the suprasylvian visual area compared to the classical visual areas (17, 18, 19) in the cat. Exp. Brain Res. 33, 435–443 (1978).

    PubMed  CAS  Google Scholar 

  94. Sanides, F. and J. Hoffmann: Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J. Hirnforschung 11, 79–104 (1969).

    CAS  Google Scholar 

  95. Schiller, P.H. and J.G.I. Malpeli: The effect of striate cortex cooling on area 18 cells in the monkey. Brain Res. 126, 366–369 (1977).

    PubMed  CAS  Google Scholar 

  96. Schiller, P. and M. Stryker: Single unit recording and stimulation in superior colliculus of the alert rhesus monkey. J. Neurophysiol. 35, 915–924 (1972).

    PubMed  CAS  Google Scholar 

  97. Schlag, J., I. Lehtinen and M. Schlag-Rey: Neuronal activity before and during eye movements in thalamic internal medullary lamina of the cat. J. Neurophysiol. 37, 982–995 (1974).

    PubMed  CAS  Google Scholar 

  98. Sillito, A.M.: Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat’s visual cortex. J. Physiol. (Lond.) 271, 669–720 (1977).

    Google Scholar 

  99. Singer, W., F. Tretter and M. Cynader: Organization of cat striate cortex: A correlation of receptive field properties with afferent and efferent connections. J. Neurophysiol. 38, 1080–1098 (1975).

    PubMed  CAS  Google Scholar 

  100. Solomon, S.J., T. Pasik and P. Pasik: Extra-geniculo-striate vision in the monkey. VIII. Critical structures for spatial localization. Exp. Brain Res. 81, 259–270 (1981).

    Google Scholar 

  101. Spatz, W.B., J. Tigges and M. Tigges: Subcortical projections, cortical associations and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri). J. Comp. Neurol. 140, 155–174 (1970).

    PubMed  CAS  Google Scholar 

  102. Spatz, W.B. and J. Tigges: Species differences between old world and new world monkeys in the organization of the striate-prestriate association. Brain Res. 43, 591–594 (1972).

    PubMed  CAS  Google Scholar 

  103. Spear, P.D. and T.P. Baumann: Receptive-field characteristics of single neurons in lateral suprasylvian visual area. J. Neurophysiol. 38, 1403–1420 (1975).

    PubMed  CAS  Google Scholar 

  104. Sprague, J.M., G. Berlucchi and G. Rizzolatti: The role of superior colliculus and pretectum in vision and visually guided behavior. pp. 27–101. In: R. Jung (Edit.) (6.3/10) (1978).

    Google Scholar 

  105. Sprague, J.M., J. Levy, A. Di Bernardino and G. Berlucchi: Visual cortical areas mediating form discrimination in the cat. J. comp. Neurol. 172, 441–488 (1977).

    PubMed  CAS  Google Scholar 

  106. Stone, J. and B. Dreher: Projection of x- and y-cells of the cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. Neurophysiol. 36, 551–567 (1973).

    PubMed  CAS  Google Scholar 

  107. Tanaka, M., B.B. Lee and O.D. Creutzfeldt: Spectral tuning and contour representation in Area 17 of the awake monkey. In: Mollon, J.D. and L.T. Sharpe (Eds.): Colour vision: Physiology and psychophysics. Academic Press, London (1983).

    Google Scholar 

  108. Tsumoto, T., O.D. Creutzfeldt and C.R. Legendy: Functional organization of the cortico-fugal system from visual cortex to lateral geniculate nucleus in the cat. Exper. Brain Res. 32, 345–364 (1978).

    CAS  Google Scholar 

  109. Tsumoto, T., W. Eckart and O.D. Creutzfeldt: Modification of orientation sensitivity of cat visual cortex neurones by removal of Gaba-mediated inhibition. Exp. Brain Res. 34, 35–363 (1979).

    Google Scholar 

  110. Tusa, R.J., L.A. Palmer: Retinotopic organization of areas 20 and 21 in the cat. J. comp. Neurol. 193, 147–164(1980).

    PubMed  CAS  Google Scholar 

  111. Tusa, R.J., L.A. Palmer and A.C. Rosenquist: The retinotopic organization of area 17 (striate cortex) in the cat. J. comp. Neurol. 177, 213–236 (1978).

    PubMed  CAS  Google Scholar 

  112. van Essen, D.C., J.H.R. Mansell and J.L. Bixby: The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization. J. comp. Neurol. 199, 293–326 (1981).

    PubMed  Google Scholar 

  113. van Essen, D.C. and S.M. Zeki: The topographic organization of rhesus monkey prestriate cortex. J. Physiol. (Lond.), 277, 193–226 (1978).

    CAS  Google Scholar 

  114. Virsu, V. and J. Rovamo: Visual resolution, contrast sensitivity and the cortical magnification factor. Exp. Brain Res. 37, 475–493 (1979).

    PubMed  CAS  Google Scholar 

  115. von der Heydt, R., Cs. Adorjani, P. Hänny and G. Baumgartner: Disparity sensitivity and receptive field incongruity of units in the striate cortex. Exp. Brain Res. 31, 523–545 (1978).

    PubMed  Google Scholar 

  116. Vidyasagar, T.R. and J.V. Urbas: Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp. Brain Res. 46, 157–169 (1982).

    PubMed  CAS  Google Scholar 

  117. Watanabe, S., M. Konishi and O.D. Creutzfeldt: Postsynaptic potentials in the cat’s visual cortex following electrical stimulation of afferent pathways. Exp. Brain Res. 1, 272–283 (1966).

    PubMed  CAS  Google Scholar 

  118. Weiskrantz, L., E.K. Warrington, M.D. Sanders and J. Marshall: Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 (1974).

    PubMed  CAS  Google Scholar 

  119. Yarbus, A.: Eye movements and vision. New York: Plenum Press (1967).

    Google Scholar 

  120. Zeki, S.M.: Representation of central visual fields in prestriate cortex of monkey. Brain Res. 14, 271–291 (1969).

    PubMed  CAS  Google Scholar 

  121. Zeki, S.M.: Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol. (Lond.) 236, 549–573 (1974).

    CAS  Google Scholar 

  122. Zeki, S.M.: Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. J. Physiol. 277, 273–290 (1978).

    PubMed  CAS  Google Scholar 

  123. Zeki, S.M.: The representation of colours in the cerebral cortex. Nature 284, 412–418 (1980).

    PubMed  CAS  Google Scholar 

Kapitel 6.4: Der auditorische Cortex

  1. Aitkin, L.H.: Tonotopic organization at higher levels of the auditory pathway. Internat. Review Physiol., Neurophysiol. II, 10. 249–280 (1976).

    Google Scholar 

  2. Creutzfeldt, O.D., H. Scheich and Chr. Schreiner (Eds.): Hearing mechanisms and speech. Exp. Brain Res., Suppl. 2 (1979).

    Google Scholar 

  3. Dunker, E.: Zentrale Bahnsysteme und Verarbeitung akustischer Nachrichten. pp. 59–120. In: Gauer, Kramer, Jung (Eds.): Physiologie des Menschen. Bd. 12: Hören, Stimme, Gleichgewicht (1972).

    Google Scholar 

  4. Evans, E.F. and J.P. Wilson (Eds.): Psychophysics and physiology of hearing. Academic Press, London (1977).

    Google Scholar 

  5. Goldstein, M.H. and M. Abeles: Single unit activity of the auditory cortex. pp. 199–219. In: W.D. Keidel and W/D/Neff (eds.) (6.4/6) (1975).

    Google Scholar 

  6. Keidel, W.D. and W.D. Neff (Eds.): Auditory system physiology (CNS), behavioral studies, psychoacoustics. Handbook of sensory physiology, Vol. V/2. Springer-Verlag, Berlin, Heidelberg, New York (1975).

    Google Scholar 

  7. Klinke, R.: Physiologie des Hörens. Teil I und II. pp. 1–58. In: Gauer, Kramer, Jung (Eds.): Physiologie des Menschen. Bd. 12: Hören, Stimme, Sprache. Urban und Schwarzenberg, München (1972).

    Google Scholar 

  8. Neff, W.D., I.T. Diamond and J.H. Casseday: Behavioral studies of auditory discrimination. Central nervous system. pp. 307–400. In: W.D. Keidel and W.D. Neff (Eds.) (6.4/6) (1975).

    Google Scholar 

B: Einzelarbeiten

  1. Abeles, M., J. Gottlieb and E. Vaadia: Is the auditory cortex a transit station for information processing (Abstract). Neruoscience letters, Supp. 7, P. 70 (1981).

    Google Scholar 

  2. Andersen, R.A., G.L. Roth, L.M. Aitkin and M.M. Merzenich: The efferent protections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J. comp. Neurol. 194, 649–662 (1980).

    PubMed  CAS  Google Scholar 

  3. Andersen, R.A., P.L. Knight and M.M. Merzenich: The thalamo-cortical and cortico-thalamic connections of AI, All and the anterior auditory field in the cat: Evidence for two largely segregated systems of connections. J. comp. Neurol. 194, 663–701 (1980).

    PubMed  CAS  Google Scholar 

  4. Andersen, R.A., R.L. Snyder and M.M. Merzenich: The topographic organization of cortico-cortical projections from physiologically identified loci in the AI, AII, and anterior auditory cortical fields of the cat. J. Comp. Neurol. 191, 479–491 (1980).

    PubMed  CAS  Google Scholar 

  5. Berlin, C.I. and M.R. McNeily: Dichotic listening. In: Lass, N.J. (Edit.): Contemporay issues in experimental phonetics. Charles C. Thomas, Springfield/Ill. (1975).

    Google Scholar 

  6. Celesia, G.G.: Organization of auditory cortical areas in man. Brain Res. 99, 403–414 (1976).

    CAS  Google Scholar 

  7. Creutzfeldt, O.D., F.C. Hellweg and Chr. Schreiner: Thalamo-cortical transformation of responses to complex auditory stimuli. Exp. Brain Res. 39, 87–104 (1980).

    PubMed  CAS  Google Scholar 

  8. Daly, D.M., D.D. Daly, J.A. Wadaz and J.W. Drane: Evidence concerning neurobiologic basis of speech perception. J. Neurol. 44, 200–222 (1980).

    CAS  Google Scholar 

  9. Diamond, I.T., E.G. Jones and T.P.S. Powell: The association connections of the auditory cortex of the cat. Brain Res. 11, 560–579 (1968).

    PubMed  CAS  Google Scholar 

  10. Diamond, I.T., E.G. Jones and T.P.S. Powell: The projection of the auditory cortex upon the diencephalon and brain stem in the cat. Brain Res. 15, 305–340 (1969).

    PubMed  CAS  Google Scholar 

  11. Downman, C.B.B., C.N. Woolsey and R.A. Lende: Auditory areas I, II and Ep.: Cochlear representation, afferent paths and interconnections. Bull. Johns Hopkins Hospital 106, 127–142 (1960).

    CAS  Google Scholar 

  12. Fitzpatrick, K.A. and Th.J. Imig: Projection of auditory cortex upon the thalamus and midbrain in the owl monkey. J. comp. Neurol. 177, 537–556 (1978).

    Google Scholar 

  13. Galaburda, A. and F. Sanides: Cytoarchitectonic organization of the human auditory cortex. J. comp. Neurol. 190, 597–610 (1980).

    PubMed  CAS  Google Scholar 

  14. Geschwind, N.: The anatomical basis of hemispheric differentiation. pp. 7–24. In: Dimond, S.J. and J.G. Beaumont (Eds.): Experimental studies in hemisphere function in the human brain. John Wiley and Sons, New York (1973).

    Google Scholar 

  15. Heath, C.J. and E.G. Jones: An experimental study of ascending connections from the posterior group of thalamic nuclei in the cat. J. comp. Neurol. 141, 397–426 (1971).

    PubMed  CAS  Google Scholar 

  16. Hellweg, F.C., R. Koch and M. Vollrath: Representation of the cochlea in the neocortex of guinea pigs. Exp. Brain Res. 29, 467–474 (1977).

    PubMed  CAS  Google Scholar 

  17. Imig, J.T. and H.O. Adrian: Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res. 138, 241–257 (1977).

    PubMed  CAS  Google Scholar 

  18. Imig, Th.J. and J.F. Brugge: Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J. comp. Neurol. 182, 637–660 (1978).

    PubMed  CAS  Google Scholar 

  19. Imig, T.J., M.A. Ruggera, L.M. Kitzes, E. Javel and J.F. Brugge: Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J. comp. Neurol. 171, 111–128 (1978).

    Google Scholar 

  20. Kelly, J.B. and I.C. Whitfield: Effects of auditory cortical lesions in discrimination of rising and falling frequency modulated tones. J. Neurophysiol. 34, 803–816 (1971).

    Google Scholar 

  21. Kitzes, L.M., K.S. Wrege and J.M. Cassaday: Patterns of responses of cortical cells to binaural stimulation. J. comp. Neurol. 192, 455–472 (1980).

    PubMed  CAS  Google Scholar 

  22. Knudsen, E.I. and Konishi, M.: A neural map of auditory space in the owl. Science 200, 795–797 (1978).

    PubMed  CAS  Google Scholar 

  23. Merzenich, M.M., R.A. Andersen and J.H. Middlebrooks: Functional organization of the auditory cortex. pp. 60–75. In: Creutzfeldt, O.D., H. Scheich and Chr. Schreiner (Eds.) (6.4/2) (1979).

    Google Scholar 

  24. Merzenich, M.M. and J.F. Brugge: Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res. 50, 275–296 (1973).

    PubMed  CAS  Google Scholar 

  25. Merzenich, M.M., P.L. Knight and G. Linn-Roth: Representation of cochlea within primary auditory cortex in the cat. J. Neurophysiol. 38, 231–249 (1975).

    PubMed  CAS  Google Scholar 

  26. Middlebrooks, J.C., R.W. Dykes and M.M. Merzenich: Binaural response-specific bands in primary auditory cortex (AI) of the cat: Topographical organization orthogonal to isofrequency contours. Brain Res. 181, 31–48 (1980).

    PubMed  CAS  Google Scholar 

  27. Mesulam, M.-M. and D.N. Pandya: The projections of the medial geniculate complex within the sylvian fissure of the rhesus monkey. Brain Res. 60, 315–333 (1973).

    PubMed  CAS  Google Scholar 

  28. Newman, J.D.: Central nervous system processing of sounds in primates. In: H. Steklis and M.J. Raleigh (Eds.): Neurobiology of social communication in primates. An evolutionary perspective. Academic Press, New York (1978).

    Google Scholar 

  29. Penfield, W. and Ph. Perot: The brains record of auditory and visual experience. Brain 86, 595–696 (1963).

    PubMed  CAS  Google Scholar 

  30. Reale, R.A. and Th.J. Imig: Tonotopic organization in auditory cortex of the cat. J. comp. Neurol. 192, 265–291 (1980).

    PubMed  CAS  Google Scholar 

  31. Roth, G.L., L.M. Aitkin, R.A. Andersen and M.M. Merzenich: Some features of the spatial organization of the central nucleus of the inferior colliculus of the cat. J. comp. Neurol. 182, 661–680 (1978).

    PubMed  CAS  Google Scholar 

  32. Sovijärvi, A.R.A.: Detection of natural complex sounds by cells in the primary auditory cortex of the cat. Acta Physiol. Scand. 93, 318–335 (1975).

    PubMed  Google Scholar 

  33. Suga, N.: Specialization of the auditory system for reception and processing of species specific sounds. Fed. Proc. Am. Soc. Exper. Biol. 37, 2342–2354 (1978).

    CAS  Google Scholar 

  34. Suga, N.: Amplitude spectrum representation in the Doppler-shifted-CF processing area of the auditory cortex of the mustache bat. Science 196, 64–47 (1977).

    PubMed  CAS  Google Scholar 

  35. Suga, N., W.E. O’Neill and T. Manabe: Harmonic sentitive neurons in the auditory cortex of the mustache bat. Science 203, 270–274 (1979).

    PubMed  CAS  Google Scholar 

  36. Ulrich, G.: Manifestationsbedingungen der akustischen Agnosie und ihre funktionsdynamischen Aspekte. Nervenarzt 48, 298–305 (1977).

    PubMed  CAS  Google Scholar 

  37. Wada, J.A., R.J. Clarke and A.E. Hamm: Morphological asymmetry of temporal and frontal speech zones in human cerebral hemispheres: Observation on 100 adult and 100 infant brains. Xth International Congress of Neurology, Barcelona (1973).

    Google Scholar 

  38. Whitfield, I.C., I.T. Diamond, K. Chiveralls and T.G. Williamson: Some further observations on the effects of unilateral cortical ablation on sound localization in the cat. Exp. Brain Res. 31, 221–234 (1978).

    PubMed  CAS  Google Scholar 

  39. Whitlock, D. and W.A. Nauta: Subcortical projections from the temporal neocortex in macaca mulatta. J. comp. Neurol. 106, 183–212 (1956).

    PubMed  Google Scholar 

  40. Winter, P. and H.H. Funckenstein: The effect of species-specific vocalization on the discharge of auditory cortical cells in the awake squirrel monkey. Exp. Brain Res. 18, 489–504 (1973).

    PubMed  CAS  Google Scholar 

  41. Woolsey, C.N.: Tonotopic organization of the auditory cortex. pp. 271–281. In: M.B. Sachs (Edit.): Physiology of the auditory system. Nation. Educational Consultants, Inc., Baltimore (1971).

    Google Scholar 

Kapitel 6.5: Der somato-sensorische Cortex

  1. Albe-Fessard, D. and J.M. Besson: Convergent thalamic and cortical projections: The non-specific system. pp. 490–560. In: A. Iggo (Edit.) (6.5/7) (1973).

    Google Scholar 

  2. Allen, G.I. and N. Tsukahara: Cerebro-cerebellar communications systems. Physiolog. Reviews 54, 957–1006(1974).

    CAS  Google Scholar 

  3. Dykes, R.W.: The anatomy and physiology of the somatic sensory cortical regions. Progr. in Neurobiology 10, 33–88 (1978).

    CAS  Google Scholar 

  4. Foerster, O.: Sensible corticale Felder. pp. 358–448. In: Bumke, O. and O. Foerster (Herausg.): Handbuch der Neurologie, Bd. 6, Springer-Verlag, Berlin (1936).

    Google Scholar 

  5. Hassler, R.: Über die afferenten Bahnen und Thalamuskerne des motorischen Systems des Großhirns. Arch. Psychiatr. Zschr. Neurol. 182, 759–818 (1949).

    Google Scholar 

  6. Hassler, R., F. Mundinger and T. Riechert: Stereotaxis in Prakinson Syndrome. pp. 39–45. Springer-Verlag, Berlin, Heidelberg, New York (1979).

    Google Scholar 

  7. Iggo, A. (Edit.): Somato-sensory system. Handbook of Sensory physiology, Vol. 2. Springer-Verlag, Berlin, Heidelberg, New York (1973).

    Google Scholar 

  8. Jones, E.G. and R. Porter: What is area 3A? Brain Res. Review 2, 1–43 (1980).

    Google Scholar 

  9. Jones, E.G. and T.P.S. Powell: Anatomical organization of the somato-sensory cortex. pp. 579–620. In: A. Iggo (Edit.) (6.5/7) (1973).

    Google Scholar 

  10. Mountcastle, V.B.: Neural mechanisms in somesthesia. In: V.B. Mountcastle (Edit.): Medical physiology. 13th Edition. The C.v. Mosby Company, Saint Louis (1974).

    Google Scholar 

  11. Semmes, J.: Somesthetic effects of damage to the central nervous system. pp. 719–742. In: A. Iggo (Edit.) (6.5/7) (1973).

    Google Scholar 

  12. Towe, A.L.: Somato-sensory cortex: Descending influence in ascending systems. pp. 701–718. In: A. Iggo (Edit.) (6.5/7) (1973).

    Google Scholar 

  13. Werner, G. and B.L. Whitsel: Functional organization of the somato-sensory cortex. pp. 620–700. In: A. Iggo (Edit.) (6.5/7) (1973).

    Google Scholar 

  14. Willis, W.D. and R.E. Coggeshall: Sensory mechanisms of the spinal cord. John Wiley and Sons, Chichester etc. (1978)

    Google Scholar 

B: Einzelarbeiten

  1. Adrian, E.D.: Afferent discharges to the cerebral cortex from peripheral sense organs. J. Physiol. (Lond.) 100, 159–191 (1941).

    CAS  Google Scholar 

  2. Applebaum, A.E., R.B. Leonard, D.R. Kenshalo, R.F. Martin and W.D. Willis: Nuclei in which functionally identified spinothalamic tract neurons terminate. J. comp. Neurol. 186, 343–369 (1969).

    Google Scholar 

  3. Boivie, J.: An anatomical re-investigation of the termination of the spinothalamic tract in the monkey. J. comp. Neurol. 186, 343–369 (1969).

    Google Scholar 

  4. Buser, P. and P. Borenstein: Réponses somesthésiques, visuelles et auditives recueillis au niveau du cortex “associatif”suprasylvien chez le chat curarisé non anesthésié. Electroenceph. Clin. Neurophysiol. 11, 299–304 (1959).

    Google Scholar 

  5. Carmon, A., J. Mor and J. Goldberg: Evoked cerebral responses to noxious thermal stimuli in humans. Exp. Brain Res. 25, 103–107 (1976).

    PubMed  CAS  Google Scholar 

  6. Cohen, M.J., S. Landgren, L. Ström and Y. Zotterman: Cortical reception of touch and taste in the cat. Acta Physiol. Scand. 40, Suppl. 135 (1957).

    Google Scholar 

  7. Craig, A.D., jr. and H. Burton: Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J. Neurophysiol. 45, 443–466 (1981).

    PubMed  Google Scholar 

  8. Craig, A.D., jr, S.J. Wiegand and J.L. Price: The thalamo-cortical projection of the nucleus submedius in the cat. J. comp. Neurol. 206, 28–48 (1982).

    PubMed  Google Scholar 

  9. Curry, M.J.: The exteroceptive properties of neurons in the somatic part of the posterior group (PO). Brain Res. 44, 439–462 (1972).

    PubMed  CAS  Google Scholar 

  10. Curry, M.J. and G. Gordon: The spinal input to the posterior group in the cat. An electrophysio-logical investigation. Brain Res. 44, 417–437 (1972).

    Google Scholar 

  11. Dykes, R.W., D.D. Rasmusson and P.B. Hoeltzell: Organization of primary somatosensory cortex in the cat. J. Neurophysiol. 43, 1527–1546 (1980).

    PubMed  CAS  Google Scholar 

  12. Fredrickson, J.M., U. Figge, P. Scheid and H.H. Kornhuber: Vestibular nerve projection to the cerebral cortex of rhesus monkey. Exp. Brain Res. 2, 318–327 (1966).

    PubMed  CAS  Google Scholar 

  13. Friedmann, D.P. and E.G. Jones: Thalamic input to areas 3A and 2 in monkeys. J. Neurophysiol. 45, 59–85 (1981).

    Google Scholar 

  14. Guilbaud, G., M. Peschanski, M. Gautron and D. Binder: Neurones responding to noxious stimulation in VB complex and caudal adjacent regions in the thalamus of the rat. Pain 8, 303–318 (1980).

    PubMed  CAS  Google Scholar 

  15. Gardner, E.P. and R.M. Costanzo: Spatial integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys. J. Neurophysiol. 43, 420–443 (1980).

    PubMed  CAS  Google Scholar 

  16. Gardner, E.P. and R.M. Costanzo: Temporal integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys. J. Neurophysiol. 43, 444–468 (1980).

    PubMed  CAS  Google Scholar 

  17. Guttierez-Mahoney, C.G.: The treatment of painful phantom limb by removal of postcentral cerebral cortex. J. Nerv. Ment. Dis. 112, 446–448 (1950).

    Google Scholar 

  18. Hassler, R. and K. Muhs-Clement: Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J. für Hirnforschung 6, 404–420 (1964).

    Google Scholar 

  19. Haight, J.R.: The general organization of somatotopic projections to SII cerebral neocortex in the cat. Exp. Brain Res. 44, 483–502 (1972).

    CAS  Google Scholar 

  20. Hellweg, F.-C., W. Schultz and O.D. Creutzfeldt: Extracellular and intracellular recordings from cat’s cortical whisker projection area: thalamo-cortical response transformation. J. Neurophysiol. 40, 463–479(1977).

    PubMed  CAS  Google Scholar 

  21. Hyvärinen, J. and A. Poranen: Movement sensitive and direction selective cutaneous receptive fields in the hand area of the post-central gyrus in the monkeys. J. Physiol. (Lond.) 283, 523–537 (1978).

    Google Scholar 

  22. Hyvärinen, J. and A. Poranen: Receptive field integration and submodality convergence in the hand area of the postcentral gyrus of the alert monkey. J. Physiol. (Lond.) 283, 539–556 (1978).

    Google Scholar 

  23. Hyvärinen, J., A. Poranen and Y. Jokinen: Influence of attentive behavior on neuronal responses to vibration in primary somato-sensory cortex of the monkey. J. Neurophysiol. 41, 870–882 (1980).

    Google Scholar 

  24. Innocenti, G.M. and T. Manzoni: Response patterns of somato-sensory cortical neurons to peripheral stimuli. An intracellular study. Arch. Ital. Biol. 110, 322–347 (1972).

    PubMed  CAS  Google Scholar 

  25. Jones, E.G. and T.P.S. Powell: Connections of the somatic sensory cortex of the rhesus monkey. Ipsilateral cortical connections. Brain 92, 457–502 (1969).

    Google Scholar 

  26. Jones, E.G. and T.P.S. Powell: 1) Electron microscopy of the somatic sensory cortex of the cat. 2) An electronmicroscopic study of the laminar pattern and model of termination of afferent fibre pathways in the somatic sensory cortex of the cat. Phil. Trans. Roy. Soc. Lond. B. 257, 1–62 (1970).

    CAS  Google Scholar 

  27. Jones, E.G.: Lamination and differential distribution of thalamic afferents within the sensory-motor cortex of the squirrel monkey. J. comp. Neurol. 160, 167–204 (1975).

    PubMed  CAS  Google Scholar 

  28. Jones, E.G., J.D. Coulter and S.H.C. Hendry: Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J. comp. Neurol. 181, 291–348 (1978).

    PubMed  CAS  Google Scholar 

  29. Jones, E.G., S.P. Wise and J.D. Coulter: Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J. Comp. Neurol. 181, 833–882 (1979).

    Google Scholar 

  30. Kaas, J.H., R.J. Nelson, M. Sur, C.-S. Lin and M.M. Merzenich: Multiple representations of the body within the primary somato-sensory cortex of primates. Science 204, 521–523 (1979).

    PubMed  CAS  Google Scholar 

  31. Kawana, E., Kusama, T.: Projection of the sensory-motor cortex to the thalamus, the dorsal column nuclei, the trigeminal nucleus and the spinal cord in the cat. Folia psychiatr. neurol. japon. 18, 337–380(1964).

    Google Scholar 

  32. Kenshalo, D.R. jr., G.J. Giesler, R.B. Leonard and W.D. Willis: Responses of neurons in primate ventral posterior lateral nucleus. J. Neurophysiol. 43, 1594–1614 (1980).

    PubMed  Google Scholar 

  33. Künzle, H.: Projections from the primary somato-sensory cortex to basal ganglia and thalamus in the monkey. Exp. Brain Res. 30, 481–492 (1977).

    PubMed  Google Scholar 

  34. Kuypers, H.G.I.M. and J. Brinkman: Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res. 24, 29–48 (1970).

    PubMed  CAS  Google Scholar 

  35. Lamour, Y., G. Guilbaud and J.C. Wilier: Rat somato-sensory (Sml) cortex: II. Laminar and columnar organization of noxious and non-noxious inputs. Exp. Brain Res. 49, 46–54 (1983).

    PubMed  CAS  Google Scholar 

  36. Lamour, Y., J.C. Wilier and G. Guilbaud: Rat somato-sensory (Sml) cortex: I. Characteristics of neuronal responses to noxious stimulations and comparison with responses to non-noxious stimulation. Exp. Brain. Res. 49, 35–45 (1983).

    PubMed  CAS  Google Scholar 

  37. Landgren, S. and K.A. Olsson: Low threshold afferent projections from the oral cavity and the face to the cerebral cortex of the cat. Exp. Brain Res. 39, 133–147 (1980).

    PubMed  CAS  Google Scholar 

  38. Libet, B.: Electrical stimulation of cortex in human subjects and conscious sensory aspects. pp. 744–790. In: A. Iggo (Edit.) (6.5/7) (1973).

    Google Scholar 

  39. Libet, B., E.W. Wright, B. Feinstein and D.K. Pearl: Subjective referral of the timing for a conscious sensory experience. A functional role for the somato-sensory specific projection system in man. Brain 102, 193–224 (1979).

    PubMed  CAS  Google Scholar 

  40. Lin, C.-S., M.M. Merzenich, M. Sur and J.H. Kaas: Connections of areas 3b and 1 of the parietal somato-sensory strip with the ventro-posterior nucleus in the owl monkey (Aotus trivirgatus). J. comp. Neurol. 185, 355–372 (1979).

    PubMed  CAS  Google Scholar 

  41. Lippman, H.H., F.W.L. Kerr: Light and electronmicroscopic study of crossed ascending pathways in the anterolateral funiculus in monkey. Brain Res. 40, 496–499 (1972).

    PubMed  CAS  Google Scholar 

  42. Manson, J.: The somato-sensory cortical projection of single nerve cells in the thalamus of the cat. Brain Res. 12, 489–492 (1969).

    PubMed  CAS  Google Scholar 

  43. Manzoni, T., R. Caminiti, G. Spidalieri and E. Morelli: Anatomical and functional aspects of the associative projections from somatic area SI and SII. Exp. Brain Res. 34, 453–470 (1979).

    PubMed  CAS  Google Scholar 

  44. Merzenich, M.M., J.H. Kaas, M. Sur and C.-S. Lin: Double representation of the body surface within cytoarchitectonic areas 3b and 1 in “SI” in the owl monkey (Aotus trivirgatus). J. comp. Neurol. 181, 41–74 (1978).

    PubMed  CAS  Google Scholar 

  45. Mountcastle, V.B.: Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurphysiol. 20, 408–434 (1957).

    CAS  Google Scholar 

  46. Mountcastle, V.B. and R. Hennemann: The representation of tactile sensibility in the thalamus of the monkey. J. comp. Neurol. 97, 409 (1952).

    PubMed  CAS  Google Scholar 

  47. Mountcastle, V.B., J.C. Lynch, A. Georgopoulos, H. Sakate and A. Acuna: Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908 (1975).

    PubMed  CAS  Google Scholar 

  48. Mountcastle, V.B. and P.S. Powell: Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination. Bull. Johns Hopkins Hosp. 105, 201–232 (1959).

    PubMed  CAS  Google Scholar 

  49. Mountcastle, V.B., W.T. Talbot, H. Sakata and J. Hyvärinen: Cortical neuronal mechanisms in flutter-vibration studied in unanesthetised monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol. 32, 452–484 (1969).

    PubMed  CAS  Google Scholar 

  50. Norsell, U.: Sensory defects caused by lesions of the first (SI) and second (SII) somato-sensory areas of the dog. Exp. Brain Res. 32, 181–195 (1978).

    Google Scholar 

  51. Norsell, U.: Behavioural studies of the somatosensory system. Physiol. Rev. 60, 327–354 (1980).

    Google Scholar 

  52. Peschanski, M., G. Guilbaud and M. Gautron: Neuronal responses to cutaneous electrical and noxious mechanical stimuli in the nucleus reticularis thalami of the rat. Neurosc. Lett. 20, 165–170 (1980).

    CAS  Google Scholar 

  53. Peschanski, M., G. Guilbaud and M. Gautron: Posterior intralaminar region in rat: Neuronal responses to noxious and non-noxious cutaneous stimuli. Exp. Neurol. 72, 226–238 (1981).

    PubMed  CAS  Google Scholar 

  54. Penfield, W. and E. Boldrey: Somatic and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Google Scholar 

  55. Pinto Hamuy, T., B. Bromiley and C.N. Woolsey: Somatic afferent areas I and II of dog’s cerebral cortex. J. Neurophysiol. 19, 485–400 (1956).

    PubMed  Google Scholar 

  56. Poggio, G.F. and V.B. Mountcastle: A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Bull. Johns Hopkins Hosp. 106, 266–316 (1960).

    PubMed  CAS  Google Scholar 

  57. Poggio, G. and V.B. Mountcastle: The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J. Neurophysiol. 26, 775–806 (1963).

    PubMed  CAS  Google Scholar 

  58. Powell, T.P.S. and V.B. Mountcastle: The cytoarchitecture of the postcentral gyrus of the monkey Macaca mulatta: Bull. Johns Hopkins Hosp. 105,108–131 (1959).

    PubMed  CAS  Google Scholar 

  59. Powell, T.P.S. and V.B. Mountcastle: Some aspects of the functional organization ot the cortex of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp. 105, 133–162 (1959).

    PubMed  CAS  Google Scholar 

  60. Ridley, R.M. and G. Ettlinger: Impaired tactile learning and retention after removals of the second somatic sensory projection cortex (SII) in the monkey. Brain Res. 109, 656–660 (1976).

    PubMed  CAS  Google Scholar 

  61. Sakata, H., Y. Takaoka, A. Kawarasaki and H. Shibutani: Somato-sensory properties of neurons in the superior parietal cortex (Area 5) of the rhesus monkey. Brain Res. 64, 85–102 (1973).

    PubMed  CAS  Google Scholar 

  62. Schwarz, D.W.F. and J.M. Fredrickson: Rhesus monkey vestibular cortex: a bimodal primary projection field. Science 172, 280–281 (1971).

    PubMed  CAS  Google Scholar 

  63. Schultz, W., G.C. Galbraith, K.-M. Gottschaldt and O.D. Creutzfeldt: A comparison of primary afferent and cortical neuron activity coding sinus hair movements in the cat. Exp. Brain Res. 24, 365–381 (1976).

    PubMed  CAS  Google Scholar 

  64. Spreafico, R., N.L. Hayes and A. Rustiono: Thalamic projections to the primary and secondary somatosensory cortices in cat: Single and double retrograde tracer studies. J. comp. Neurol. 203, 67–90(1981).

    PubMed  CAS  Google Scholar 

  65. Talbot, W.H., I. Darian-Smith, H. Kornhuber and V.B. Mountcastle: The sense of flutter vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol. 31, 301–334 (1968).

    PubMed  CAS  Google Scholar 

  66. Vogt, B.A. and D.N. Pandya: Cortico-cortical connections of somatic sensory cortex (Areas 3,1 and 2) in the rhesus monkey. J. comp. Neurol. 177, 179–192 (1977).

    Google Scholar 

  67. Weisberg, J.A. and A. Rustioni: Cortical cells projecting to the dorsal column nuclei of Rhesus monkey. Exp. Brain Res. 28, 521–528 (1977).

    PubMed  CAS  Google Scholar 

  68. Weisberg, J.A. and A. Rustioni: Differential projections of cortical sensorimotor areas upon the dorsal column nuclei of cats. J. comp. Neurol. 184, 401–422 (1979).

    PubMed  CAS  Google Scholar 

  69. Welker, W.I.: Principles of organization of the ventrobasal complex in mammals. Brain Res. Behav. Evol. 7, 253–336 (1973).

    CAS  Google Scholar 

  70. Welker, C.: Receptive fields of barrels in the somatosensory neocortex of the rat. J. comp. Neurol. 166, 173–190 (1976).

    PubMed  CAS  Google Scholar 

  71. Welker, C. and T.A. Woolsey: Structure of layer IV in the somato-sensory neocortex of the rat: Description and comparison with the mouse. J. comp. Neurol. 158, 437–454 (1974).

    PubMed  CAS  Google Scholar 

  72. Whitsel, B.L., L.M. Petrucello and G. Werner: Symmetry and connectivity in the map of the body surface in somato-sensory area II of primates. J. Neurophysiol. 32, 170–183 (1969).

    PubMed  CAS  Google Scholar 

  73. Whitsel, B.L., J.R. Roppolo and G. Werner: Cortical information processing of stimulus motion on primate skin. J. Neurophysiol. 35, 691–717 (1972).

    PubMed  CAS  Google Scholar 

  74. Willis, W.D., D.R. Kenshalo, jr. and R.B. Leonard: The cells of origine of the primate spinothalamic tract. J. comp. Neurol. 188, 543–573 (1979).

    PubMed  CAS  Google Scholar 

  75. Woolsey, C.N. and D. Fairman: Contralateral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep and other mammals. Surgery (St. Louis) 19, 684–702 (1946).

    CAS  Google Scholar 

  76. Woolsey, C.N., W.H. Marshall and P. Bara: Representation of cutaneous tactile sensitivity in the cerebral cortex of the monkeys as indicated by evoked potentials. Bull. Johns Hopkins Hosp. 70, 399–441 (1942).

    Google Scholar 

  77. Woolsey, T.A. and H. van der Loos: The structural organization of layer IV in the somato-sensory region (SI) of the mouse cerebral cortex: the description of the cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    PubMed  CAS  Google Scholar 

  78. Woolsey, T.A., C. Welker and R.H. Schwartz: Comparative anatomical studies of the Sml face cortex with special reference to the occurence of “Barrels” in layer IV. J. comp. Neurol. 164, 79–94 (1975).

    PubMed  CAS  Google Scholar 

Kapitel 6.6: Der motorische Cortex und die Pyramidenbahn

  1. Asanuma, H.: Recent development in the study of the columnar arrangement of neurons within the motor cortex. Physiol. Rev. 55, 143–156 (1975).

    PubMed  CAS  Google Scholar 

  2. Brookhart, J.M. and V.B. Mountcastle (Eds.):Handbook of Physiology. Section I: The Nervous System. Vol. II: Motor Control. Americ. Physiol. Society, Bethesda/Ma. (1981).

    Google Scholar 

  3. Bucy, P.C. (Edit.): The precentral motor cortex. University of Illinois Press, Urbana/Ill. (1944).

    Google Scholar 

  4. Crosby, C.E., T. Humphrey and M.J. Showers: Einige Anordnungen, Verbindungen und Funktionen der supplementären motorischen Rinden. In: K.F. Bauer (Edit.): Medizinische Grundlagenforschung, Bd.II. Georg Thieme Verlag, Stuttgart (1959).

    Google Scholar 

  5. Denny-Brown, D.: The cerebral control of movement. University Press, Liverpool (1965).

    Google Scholar 

  6. Evarts, E.V.: Role of motor cortex in voluntary movements in primates. pp. 1083–1120. In: Brookhart, J.M. and V.B. Mountcastle (Eds.) (6.6/10) (1981).

    Google Scholar 

  7. Foerster, O.: Motorische Felder und Bahnen. pp. 1–357 In: Bumke, O. und O. Foerster: Handbuch der Neurologie, Bd. 6. Springer-Verlag, Berlin, Heidelberg (1936).

    Google Scholar 

  8. Henatsch, H.-D.: Zerebrale Regulation der Sensomotorik. pp. 265–420. In: Gauer, Kramer, Jung (Edit.): Physiologie des Menschen. Bd. 14: Sensomotorik. Urban und Schwarzenberg, München, Berlin, Wien (1976).

    Google Scholar 

  9. Hines, M.: Significance of the precentral motor cortex. pp. 461–493. In: Bucy, P. (Edit.) (6.6/2) (1944).

    Google Scholar 

  10. Kuypers, H.G.J.M.: The anatomical organization of the descending pathways and their contributions to motor control especially in primates. pp. 33–36. In: Desmedt, J.E. (Edit.): New Developments in EMG and Clinical Neurophysiology. Vol. 3. Karger Verlag, Basel (1973).

    Google Scholar 

  11. Kuypers, H.G.J.M.: The general organization of the thalamo-frontal connections in the rhesus monkey. pp. 10–20. In: Desmedt, J.E. (Edit.): Cerebral motor control in man: long loop mechanisms. S. Karger, Basel etc. (1978).

    Google Scholar 

  12. Lassek, A.M.: The pyramidal tract: basic considerations of cortico-spinal neurons. Res. Publ. Ass. nerv. ment. Dis. 27, 106–128 (1948).

    Google Scholar 

  13. Patton, H.D. and Amassian, V.E.: The pyramidal tract: its excitation and functions. pp. 837–861. In: Handbook of Physiology, Neurophysiology (Ed. J. Field), Vol. 2, Americ. Physiol. Society, Washington (1960).

    Google Scholar 

  14. Penfíeld, W.: The excitable cortex in conscious man. Liverpool Press, Liverpool (1958).

    Google Scholar 

  15. Penfield, W. and A.I. Rasmussen: Cerebral cortex of man. A clinical study of localization of function. Mac Millan, New York (1950).

    Google Scholar 

  16. Phillips, C.G. and R. Porter: Corticospinal neurons. Their role in movement. Academic Press, London, New York (1977).

    Google Scholar 

  17. Tower, S.S.: Pyramidal tract lesion in the monkey. Brain 63, 36–90 (1940).

    Google Scholar 

  18. Vogt, C. and O.: Allgemeinere Ergebnisse unserer Hirnforschung. IV. Die physiologische Bedeutung der architektonischen Rindenfelderung aufgrund unserer Rindenreizungen. J. Psychol. und Neurol. 25, 401–461 (1919).

    Google Scholar 

  19. Wiesendanger, M.: Organization of secondary motor areas of the cerebral cortex. pp. 1121–1147. In: Brookhart, J.M. and V.B. Mountcastle (Eds.) (6.6/1a) (1981).

    Google Scholar 

B: Einzelarbeiten

  1. Andersen, P., P.J. Hagan, C.G. Phillips and T.P.S. Powell: Mapping by microstimulation of overlapping projections from area 4 to motor units of the baboon’s hand. Proc. R. Soc. Lond. B. 188, 31–60 (1975).

    PubMed  CAS  Google Scholar 

  2. Asanuma, H., L. Larsen and H. Yumira: Peripheral input pathways to the monkey motor cortex. Exp. Brain. Res. 38, 349–355 (1980).

    PubMed  CAS  Google Scholar 

  3. Asanuma, H., P. Zarzecki, E. Jankowska, T. Hongo and S. Marcus: Projection of individual pyramidal tract neurons to lumbar motoneuron pools of the monkeys. Exp. Brain Res. 34, 73–89 (1979).

    PubMed  CAS  Google Scholar 

  4. Bernhard, C.G. and E. Bonin: Monosynaptic cortocospinal activation of forelimb motoneurons in monkeys. Act. physiol. scandin. 31, 104–112 (1954).

    CAS  Google Scholar 

  5. Bizzi, E. and P.H. Schiller: Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res. 10, 151–158 (1970).

    Google Scholar 

  6. Bizzi, E.: Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res. 6, 69–80 (1968).

    PubMed  CAS  Google Scholar 

  7. Brinkman, J. and H.G.M. Kuypers: Cerebral control of contralateral and ipsilateral arm, hand and finger movements in the split-brain rhesus monkey. Brain 96, 653–674 (1973).

    Google Scholar 

  8. Brinkman, J. and R. Porter: Supplementary motor area of the monkey: activity of neurons during performance of a learned motor task. J. Physiol. (Paris) 74, 313–316 (1978).

    CAS  Google Scholar 

  9. Brodal, P.: The cortico-pontine projection in the rhesus monkey. Origine and principles of organization. Brain 101, 251–283 (1978).

    PubMed  CAS  Google Scholar 

  10. Brodal, P.: The cortical projection to the nucleus reticularis tegmenti pontis in the rhesus monkey. Exp. Brain Res. 38, 29–36 (1980).

    PubMed  CAS  Google Scholar 

  11. Cheney, P.D. and E.E. Fetz: Functional classes of cortico-motoneuronal cells and their relation to active force. J. Neurophysiol. 44, 773–791 (1980).

    PubMed  CAS  Google Scholar 

  12. Clough, J.F.M., C.G. Phillips and J.D. Sheridan: The short-latency projection from the baboons motor cortex to fusimotor neurons of the forearm and hand. J. Physiol. 216, 257–279 (1971).

    PubMed  CAS  Google Scholar 

  13. Conrad, B., K. Matsunami, J. Meyer-Lohmann, M. Wiesendanger and V.B. Brooks: Cortical load compensation during voluntary elbow movements. Brain Res. 71, 219–236 (1975).

    Google Scholar 

  14. Conrad, B., J. Meyer-Lohmann, K. Matsunami and V.B. Brooks: Precentral unit activity following torque pulse injections into elbow movements. Brain Res. 94, 219–236 (1975).

    PubMed  CAS  Google Scholar 

  15. Conrad, B., M. Wiesendanger, K. Matsunami and V.B. Brooks: Precentral unit activity related to control of arm movements. Exp. Brain Res. 29, 85–95 (1977).

    PubMed  CAS  Google Scholar 

  16. Coulter, J.D. and F.G. Jones: Differential distribution of cortico-spinal projections from individual cytoarchitectonic fields in the monkey. Brain Res. 129, 335–340 (1977).

    PubMed  CAS  Google Scholar 

  17. Deecke, L. and H.H. Kornhuber: An electrical sign of participation of the mesial ’supplementary’ motor cortex in human voluntary finger movement. Brain Res. 159, 473–476 (1978).

    PubMed  CAS  Google Scholar 

  18. Dhanarajan, P., D.G. Rüegg and M. Wiesendanger: An anatomical investigation of the corticopontine projection from motor and somatosensory areas. Neuroscience 2, 913–922 (1977).

    Google Scholar 

  19. Dusser de Barenne, J.G.: Physiologie der Großhirnrinde. pp. 268–358. In: Bumke, O. and O. Foerster (Herausg.): Handbuch der Neurologie, Bd. 2, Springer-Verlag, Berlin (1937).

    Google Scholar 

  20. Eccles, J.C.: The initiation of voluntary movements by the supplementary motor area. Arch. Psychiatr. Nervenkr. 231, 423–441 (1982).

    PubMed  CAS  Google Scholar 

  21. Evarts, E.V.: Relation of pyramidal tract activity to force exerted during voluntary movements. J. Neurophysiol. 31, 14–27 (1968).

    PubMed  CAS  Google Scholar 

  22. Evarts, E.V.: Precentral and postcentral cortical activity in association with visually triggered movement. J. Neurophysiol. 37, 373–381 (1974).

    PubMed  CAS  Google Scholar 

  23. Evarts, E.V.: Motor cortex reflexes associated with learned movement. Science 179, 501–503 (1973).

    PubMed  CAS  Google Scholar 

  24. Evarts, E.V.: Activity of pyramidal tract neurons during postural fixation. J. Neurophysiol. 32, 375–385 (1969).

    PubMed  CAS  Google Scholar 

  25. Evarts, E.V., C. Fromm, J. Kröller and V.A. Jennings: Motor cortex control of finely-graded forces. J. Neurophysiol. 49, 1199–1215 (1983).

    PubMed  CAS  Google Scholar 

  26. Evarts, E.V. and C. Fromm: Sensory responses in motor cortex neurons during precise motor control. Neuroscience Letters 5, 267–272 (1977).

    PubMed  CAS  Google Scholar 

  27. Fabisch, W., P. Glees and A.L. Mac Millan: Hemispherectomy for the treatment of epilepsy in infantile hemiplegia. Monatsschr. Psychiatr. Neurol. 130, 385–405 (1955).

    PubMed  CAS  Google Scholar 

  28. Ferrier, D.: Experiments on the brain of monkeys. Proc. R. Soc. Lond. B. 23, 409–430 (1875).

    Google Scholar 

  29. Fetz, E.E., D.V. Finocchio, M.A. Baker and M.J. Soso: Sensory and motor responses of precentral cortex cells during comparable passive and active joint movements. J. Neurophysiol. 43, 1070–1089 (1980).

    PubMed  CAS  Google Scholar 

  30. Fetz, E.F. and P.D. Cheney: Post spike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J. Neurophysiol. 44, 751–772 (1980).

    PubMed  CAS  Google Scholar 

  31. Foerster, O.: The cerebral cortex in man. Lancet 2, 309 (1931).

    Google Scholar 

  32. Fritsch, G. and E. Hitzig: Über die elektrische Erregbarkeit des Großhirns. Anat. Physiol. Wiss. Med. 37, 300–332 (1870).

    Google Scholar 

  33. Fromm, C.: Die Rolle des motorischen Cortex bei Feinbewegungen. Thieme Copythek, Thieme Verlag, Stuttgart (1979).

    Google Scholar 

  34. Fromm, C.: Contrasting properties of pyramidal tract neurons located in pre- and postcentral areas and of corticorubral neurons in the behaving monkey. In: Motor Control Mechanisms in Man, ed. J.E. Desmedt, New York, Raven Press (1982).

    Google Scholar 

  35. Fromm, C. and E.V. Evarts: Relation of size and activity of motor cortex pyramidal tract neurons during skilled movements in the monkey. J. Neuroscience 1, 453–460 (1981).

    CAS  Google Scholar 

  36. Fromm, C., E.V. Evarts, J. Kröller and Y. Shinoda: Activity of motor cortex and red nucleus neurons during voluntary movement. pp. 269–294. In: O. Pompeiano and C. Ajmone Marsan (Eds.): Brain Mechanisms and Perceptual Awareness, IBRO Monograph Series, Raven Press, New York (1981).

    Google Scholar 

  37. Fromm, C. and E.V. Evarts: Pyramidal tract neurons in somatosensory cortex: central and peripheral inputs during voluntary movement. Brain Res. 238, 186–191 (1982).

    PubMed  CAS  Google Scholar 

  38. Gatter, K.L., J.J. Sloper and T.P.S. Powell: An electron microscopic study of the termination of intracortical axons upon Betz-cells in area 4 of the monkey. Brain 101, 543–553 (1978).

    PubMed  CAS  Google Scholar 

  39. Grünbaum, A.S.F. and C.S. Sherrington: Observations on the physiology of the cerebral cortex of the higher apes. Proc. Roy. Soc. B. 69, 206–209 (1903).

    Google Scholar 

  40. Hassler, R., F. Mundinger and T. Riechert: Stereotaxis in Parkinson Syndrome. Springer-Verlag, Berlin, Heidelberg, New York (1979).

    Google Scholar 

  41. Hayes, N.L. and A. Rustioni: Descending projections from brainstem and sensorimotor cortex to spinal enlargements in the cat. Single and double retrograde tracer studies. Exp. Brain Res. 41, 89–107(1981).

    PubMed  CAS  Google Scholar 

  42. Hongell, A., G. Wallin and K.E. Hagbarth: Unit activity connected with movement initiation and arousal situations recorded from the human thalamus. Acta Neurol. Scand. 49, 681–698 (1973).

    PubMed  CAS  Google Scholar 

  43. Horsley, V. and E.A. Schäfer: A record of experiments upon the functions of the cerebral cortex. Philos. Trans. Roy. Soc. B. 179, 1–45 (1888).

    Google Scholar 

  44. Humphrey, D.R.: Relating motor cortex spike trains to measure of motor performance. Brain Res. 40, 7–18(1972).

    PubMed  CAS  Google Scholar 

  45. liiert, M., A. Lundberg and R. Tanaka: Integration in descending motor pathways controlling the forelimb in the cat. Exp. Brain Res. 26, 509–540 (1976) and 29, 323–346 (1977).

    Google Scholar 

  46. Jackson, J.H.: Cases of partial convulsion from organic brain desease, bearing on the experiments of Hitzig and Ferrier. Medical Times and Gazette 1, 578–579 (1875).

    Google Scholar 

  47. Jankowska, E.: Some problems of projections and actions of cortico- and rubro-spinal fibres. J. Physiol. (Paris) 74, 209–214 (1978).

    CAS  Google Scholar 

  48. Jankowska, E., Y. Padel and R. Tanaka: Disynaptic inhibition of spinal motoneurons from the motor cortex in the monkey. J. Physiol. (Lond.) 258, 467–487 (1976).

    CAS  Google Scholar 

  49. Jankowska, E., Y. Padel and R. Tanaka: The mode of activation of pyramidal tract cells by intracortical stimuli. J. Physiol. 249, 617–636 (1975).

    PubMed  CAS  Google Scholar 

  50. Jankowska, E., Y. Padel and R. Tanaka: Projections of pyramidal tract cells to α-motoneurons innervating hind-limb muscles in the monkey. J. Physiol. 249, 637–667 (1975).

    PubMed  CAS  Google Scholar 

  51. Janzen, R.W.C., J.E.J. Speckmann, H. Caspers and C.E. Eiger: Cortico-spinal connections in the rat. II. Oligosynaptic and polysynaptic responses of lumbar motoneurons to epicortical stimulation. Exp. Brain Res. 28, 405–420 (1977).

    PubMed  CAS  Google Scholar 

  52. Jung, R. and V. Dietz: Verzögerter Start der Willkürbewegung bei Pyramidenläsionen des Menschen. Arch. Psychiat. Nervenkr. 221, 87–109 (1975).

    PubMed  CAS  Google Scholar 

  53. Kievit, J. and H.G.J.M. Kuypers: Subcortical afferents to the frontal lobe of the rhesus monkey studied by means of retrograde horseradish peroxidase transport. Brain Res. 85, 261–266 (1975).

    PubMed  CAS  Google Scholar 

  54. Kievit, J. and H.G.J.M. Kuypers: Organization of the thalamo-cortical connexions in the frontal lobe in the rhesus monkey. Exp. Brain Res. 29, 299–322 (1977).

    PubMed  CAS  Google Scholar 

  55. Künzle, H.: An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (Areas 6 and 9) in Macaca fascicularis. Brain, Behav. and Evol. 15, 185–243 (1978).

    Google Scholar 

  56. Kuypers, H.G.J.M.: Corticospinal connections: postnatal development in the rhesus monkey. Science 138, 678–680 (1962).

    PubMed  CAS  Google Scholar 

  57. Kuypers, H.G.J.M., W.R. Fleming and J.W. Farinholt: Subcorticospinal projections in the rhesus monkey. J. comp. Neurol. 118, 107–137 (1962).

    PubMed  CAS  Google Scholar 

  58. Kuypers, H.G.J.M. and D.G. Lawrence: Cortical projections to the red nucleus and the brain stem in rhesus monkey. Brain Res. 4, 151–188(1967).

    PubMed  CAS  Google Scholar 

  59. Landgren, S.H., H. Silfvenius and D. Wolsk: Vestibular, cochlear and trigeminal projections to the cortex in the anterior suprasylvian sulcus of the cat. J. Physiol (Lond.) 191, 561–573 (1967).

    CAS  Google Scholar 

  60. Latto R. and A. Cowey: Visual field defect after frontal eye-field lesions in monkeys. Brain Res. 30, 1–24(1971).

    PubMed  CAS  Google Scholar 

  61. Lawrence, D.G. and D.A. Hopkins: The development of motor control in the rhesus monkey: evidence concerning the role of cortico-motoneural connections. Brain 99, 235–254 (1976).

    PubMed  CAS  Google Scholar 

  62. Lawrence, D.G. and H.G.J.M. Kuypers: The functional organization of the motor system in the monkey. Brain 91, 1–36(1968).

    PubMed  CAS  Google Scholar 

  63. Lemon, R.N.: Functional properties of monkey motor cortex neurones receiving afferent input from the hand and fingers. J. Physiol. 311, 487–519 (1981).

    Google Scholar 

  64. Lemon, R.N. and J. van der Burg: Short latency peripheral inputs to thalamic neurons projecting to the motor cortex in the monkey. Exp. Brain. Res. 36, 445–462 (1979).

    PubMed  CAS  Google Scholar 

  65. Lemon, R.N., J.A. Hanby and R. Porter: Relationship between the activity of precentral neurons during active and passive movements in conscious monkeys. Proc. R. Soc. Lond. B. 194, 341–373 (1976).

    PubMed  CAS  Google Scholar 

  66. Lemon, R.N. and R. Porter: Afferent input to movement related precentral neurons in conscious monkeys. Proc. Roy. Soc. Lond. B. 194, 313–339 (1976).

    CAS  Google Scholar 

  67. Macpherson, J.M., C. Marangoz, T.S. Miles and M. Wiesendanger: Microstimulation of the supplementary motor area (SMA) in the awake monkey. Exp. Brain Res. 45, 410–416 (1982).

    PubMed  CAS  Google Scholar 

  68. Macpherson, J., M. Wiesendanger, C. Marangoz and T.S. Milesi: Corticospinal neurones of the supplementary motor area of monkeys. Exp. Brain Res. 48, 81–88 (1982).

    PubMed  CAS  Google Scholar 

  69. Mountcastle, V.B., J.C. Lynch, A. Georgopulos, H. Sakata and C. Acuna: Posterior association cortex of the monkey, command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908 (1975).

    PubMed  CAS  Google Scholar 

  70. Murphy, J.T., H.C. Kwan, W.A. MacKay and Y.C. Wong: Spatial organization of precentral cortex in awake primates, III. Input-output coupling. J. Neurophysiol. 41, 1132–1139 (1978).

    CAS  Google Scholar 

  71. Murray, E.A. and J.D. Coulter: Organization of cortico-spinal neurons in the monkey. J. comp. Neurol. 195, 339–365 (1981).

    PubMed  CAS  Google Scholar 

  72. Penfield, W. and K. Welch: Supplementary motor area of the cerebral cortex. Arch. Neurol. Psychiatr. (Chic.) 66, 289–317 (1951).

    CAS  Google Scholar 

  73. Phillips, C.G.: Cortical localization and sensori-motor processes at the “middle level” in primates. Proc. Roy. Soc. Med. 66, 41–56 (1973).

    Google Scholar 

  74. Phillips, C.G.: Motor apparatus of the baboon’s hand. Proc. Roy. Soc. B. 173, 141–174 (1969).

    CAS  Google Scholar 

  75. Pinter, M.J., R.E. Burke, M.J. O’Donovan and R.P. Dum: Supraspinal facilitation of cutaneous polysynaptic EPSPs in cat medial gastrocnemius motoneurons. Exp. Brain Res. 45, 133–143 (1982).

    PubMed  CAS  Google Scholar 

  76. Porter, R. and M. McD. Lewis: Relationship of neuronal discharges in the precentral gyrus of monkeys to the performance of arm movements. Brain Res. 98, 21–36 (1975).

    PubMed  CAS  Google Scholar 

  77. Rexed, B.: Some aspects of the cytoarchitectonics and synaptology of the spinal cord. Progr. Brain Res. 11, 58–90 (1964).

    CAS  Google Scholar 

  78. Rinvik, E.: Organization of thalamic connections from motor and somatosensory cortical areas in the cat. pp. 57–90. In: Frigyesi, T., E. Rinvik and M.D. Yahr (Eds.), Cortico-thalamic projections and sensorimotor activities. Raven Press, New York (1964).

    Google Scholar 

  79. Rispal-Padel, L. and J. Latreille: The organization of projections from the cerebellar nuclei to the contralateral motor cortex in the cat. Exp. Brain Res. 19, 36–60 (1974).

    PubMed  CAS  Google Scholar 

  80. Roland, P.E., B. Larsen, N.A. Lassen and E. Skinhoj: Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol. 43, 118–150 (1980).

    PubMed  CAS  Google Scholar 

  81. Russell, J.R. and W. DeMyer: The quantitative cortical origin of pyramidal axons of Macaca rhesus, with some remarks on the slow rate of axolysis. Neurology (Minneap.) 11, 96–108 (1961).

    CAS  Google Scholar 

  82. Schmidt, E.M., R.G. Jost and K.K. Davis: Reexamination of the relationship of cortical cell discharge patterns with conditioned wrist movement. Brain Res. 83, 213–223 (1975).

    PubMed  CAS  Google Scholar 

  83. Smith, A.M.: The activity of supplementary motor area neurons during a maintained precision grip. Brain Res. 172, 315–327 (1979).

    PubMed  CAS  Google Scholar 

  84. Shinoda, Y., P. Zarzecki, H. Asanuma: Spinal branching of pyramidal tract neurons in the monkey. Exp. Brain Res. 34, 59–72 (1972).

    Google Scholar 

  85. Soso, M.J. and E.E. Fetz: Responses of identified cells in postcentral cortex of awake monkeys during comparable active and passive joint movements. J. Neurophysiol. 43, 1090–1110 (1980).

    PubMed  CAS  Google Scholar 

  86. Strick, P.L. and J.B. Preston: Multiple representation in the motor cortex, a new concept of input- output organization for the arm representation. pp. 205–221. In: H. Asanuma and V.J. Wilson (Eds.), Integration in the Nervous System. Igaku Shoin, Tokyo (1979).

    Google Scholar 

  87. Tanji, J. and E.V. Evarts: Anticipatory activity of motorcortex neurons in relation to direction of intended movement. J. Neurophysiol. 39, 1062–1068 (1968)

    Google Scholar 

  88. Tracey, P.J., C. Asanuma, E.G. Jones and R. Porter: Thalamic relay to motor cortex, afferent pathways from brain stem, cerebellum and spinal cord in monkeys. J. Neurophysiol. 44, 532–554 (1980).

    PubMed  CAS  Google Scholar 

  89. Welker, W.I., R.M. Benjamin, R.C. Miles and C.N. Woolsey: Motor effects of stimulation of cerebral cortex of squirrel monkey (Saimiri sciureus). J. Neurophysiol. 20, 347–364 (1957).

    PubMed  CAS  Google Scholar 

  90. Welt, C., J.C. Aschoff, K. Kameda and V.B. Brooks: Intracortical neurons. pp. 255–293. In: Yahr, M.D. and D.P. Purpura (Eds.), Neurophysiological basis of normal and abnormal motor activities. Raven Press, New York (1967).

    Google Scholar 

  91. Wiesendanger, M.: Comments on the problem of transcortical reflexes. J. Physiol. (Paris) 74, 325–330 (1978).

    Google Scholar 

  92. Wiesendanger, M.: Input from muscle and cutaneous nerves of the hand and forearm to neurones of the precentral gyrus of baboons and monkeys. J. Physiol. 228, 203–219 (1973).

    PubMed  CAS  Google Scholar 

  93. Wiesendanger, R., M. Wiesendanger and D.G. Rüegg: An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri Sciureus). II. The projection from frontal and parietal association areas. Neuroscience 4, 747–765 (1979).

    PubMed  CAS  Google Scholar 

  94. Wise, S.D. and J. Tanji: Supplementary and precentral motor cortex, contrast in responsiveness to peripheral input in the hindlimb area of the unanaesthetized monkey. J. comp. Neurol. 195, 433–451 (1981).

    PubMed  CAS  Google Scholar 

  95. Woolsey, C.N.: Cortical motor map of Macaca mulatta after chronic section of the medullary pyramid. pp. 17–32. In: Zülch, K.J., O. Creutzfeldt, G.C. Galbraith (Eds.): Cerebral localization. Springer-Verlag, Berlin, Heidelberg, New York (1975).

    Google Scholar 

  96. Woolsey, C.N., T. Gorska, A. Wetzel, T.C. Erickson, F J. Earls and J.M. Allman: Complete unilateral sections of the pyramidal tract at the medullary level in Macaca mulatta. Brain Res. 40, 119–123 (1972).

    PubMed  CAS  Google Scholar 

  97. Woolsey, C.N., P.H. Settlage, D.R. Meyer, W. Sencer, T. Pinto-Hamey and A.M. Travis: Patterns of localization in precentral and supplementary motor areas and their relation to the concept of a premotor area. Res. Publ. Assoc. Dis. 30, 238–264 (1952).

    CAS  Google Scholar 

  98. Yakovlev, P.I. and R. Rakic: Patterns of decussation of bulbar pyramids and distribution of pyramidal tracts on two sites of the spinal cord. Trans. Amer. Neurol. Assoc. 91, 366–367 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Creutzfeldt, O.D. (1983). Funktionelle Topographie sensorischer und motorischer Felder. In: Cortex Cerebri. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68962-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68962-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68963-5

  • Online ISBN: 978-3-642-68962-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics