Skip to main content

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 24))

Abstract

Transection of the axonal process causes characteristic changes in the morphology and chemistry of the severed neuron. Such retrograde changes occur in both the extrinsic and the intrinsic neurons. There are, however, important quantitative and qualitative differences in the responses of these two classes of cells. Extrinsic neurons send their axons to the periphery and are in general capable of regeneration. They show alteration in their protein synthesis with an increase in structural proteins and a decrease in transmitter-related enzymes. Changes in certain RNA species may reflect the triggering of a genetically based “regeneration program.” A very early increase in glucose consumption is observed autoradiographically over the entire regenerating motor nucleus, suggesting participation of other tissue elements in the retrograde changes. Microglial cells and vascular cells seem to play an important role in this process too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, L., and Langford, C.J. 1980. Nerve regeneration: A biochemical view. Trends Neurosci. 3: 130–132.

    Article  CAS  Google Scholar 

  2. Barron, K.D. 1982. Comparative cytological and cyto-chemical observations on axon reaction in central and peripheral mammalian neurons. In Proceedings of the First International Symposium on Spinal Cord Reconstruction, eds. C.C. Kao and R.B. Bunge. New York: Raven Press, in press.

    Google Scholar 

  3. Barron, K.D.; Chiang, T.Y.; Daniels, A.C.; and Doolin, P.F. 1971. Subcellular accompaniments on axon reaction in cervical motoneurons of the cat. In Progress in Neuropathology, ed. H. M. Zimmerman, vol. 1, pp. 255–280. New York: Grune and Stratten.

    Google Scholar 

  4. Bisby, M.A. 1979. Changes in the composition of labeled protein transported in motor axons during their regeneration. J. Neurobiol. 11: 435–445.

    Article  Google Scholar 

  5. Blinzinger, K., and Kreutzberg, G.W. 1968. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch. 85: 145–157.

    Article  PubMed  CAS  Google Scholar 

  6. Chubb, I.W.; Hodgson, A.J.; and White, G.H. 1980. Acetyl-cholinesterase hydrolyzes Substance P. Neurosci. 5: 2065–2072.

    Article  CAS  Google Scholar 

  7. Cragg, B.G. 1970. What is the signal for chromatolysis? Brain Res. 23: 1–21.

    Article  PubMed  CAS  Google Scholar 

  8. Grafstein, B., and McQuarrie, E.I. 1978. Role of the nerve cell body in axonal regeneration. In Neuronal Plasticity, ed. C.W. Cotman, pp. 155–195. New York: Raven Press

    Google Scholar 

  9. Griffin, J.W.; Drachman, D.B.; and Price, D.L. 1976. Fast axonal transport in motor nerve regeneration. J. Neurobiol. 7: 355–370.

    Article  PubMed  CAS  Google Scholar 

  10. Gunning, P.W.; Kaye, P.L.; and Austin, L. 19 76. In vivo RNA synthesis within the rat nodose ganglia. J. Neurochem. 28: 1237–1240.

    Article  Google Scholar 

  11. Hall, M.E.; Wilson, D.L.; and Stone, G.C. 1978. Changes in synthesis of specific proteins following axotomy: Detection with two-dimensional gel electrophoresis. J. Neurobiol 9: 353–366.

    Article  PubMed  CAS  Google Scholar 

  12. Härkönen, M.H.A., and Kauffman, F.C. 1973. Metabolic alterations in the axotomized superior cervical ganglion of the rat. I. Energy metabolism. Brain Res. 65: 127–139.

    Article  Google Scholar 

  13. Härkönen, M.H.A., and Kauffman, F.C. 1974. Metabolic alterations in the axotomized superior cervical ganglion of the rat. II. The pentose phosphate pathway. Brain Res. 65: 141–157.

    Article  PubMed  Google Scholar 

  14. Hoffman, P.N., and Lasek, R.J. 1980. Axonal transport of the cytoskeleton in regenerating motor neurons: constancy and change. Brain Res. 202: 317–353.

    Article  PubMed  CAS  Google Scholar 

  15. Isenberg, G.; Rieske, E.; and Kreutzberg, G.W. 1977. Distribution of actin and tubulin in neuroblastoma cells. Cytobiologie 15: 382–389.

    Google Scholar 

  16. Isenberg, G.; Schubert, P.; and Kreutzberg, G.W. 1980. Experimental approach to test the role of actin in axonal transport. Brain Res. 194: 588–593.

    Article  PubMed  CAS  Google Scholar 

  17. Isenberg, G.; Small, J.V.; and Kreutzberg, G.W. 1978. Correlation between actin polymerization and surface receptor segregation in neuroblastoma cells treated with concanavalin A. J. Neurocytol. 7 649–661.

    Article  PubMed  CAS  Google Scholar 

  18. Kreutzberg, G.W. 1963. Changes of coenzyme (TPN) diaphorase and TPN-linked dehydrogenase during axonal reac-tion of the nerve cell. Nature 199: 393–394.

    Article  PubMed  CAS  Google Scholar 

  19. Kreutzberg, G.W. 1979. Neurobiological factors influencing regeneration of facial motor neurons. Clinics Plast. Surg. 6: 389–395.

    CAS  Google Scholar 

  20. Kreutzberg, G.W., and Barron, K.D. 1978. 5’-nucleotidase of microglial cells in the facial nucleus during axonal reaction. J. Neurocytol. 7 601–610.

    Article  PubMed  CAS  Google Scholar 

  21. Kreutzberg, G.W., and Emmert, H. 1980. Glucose utilization of motor nuclei during regeneration: A 14C 2-deoxy- glucose study. Exp. Neurol. 70: 712–716.

    Article  PubMed  CAS  Google Scholar 

  22. Kreutzberg, G.W., and Schubert, P. 1971. Changes in axonal flow during regeneration of mammalian motor nerves. Acta Neuropath. (Berl.) Suppl 5: 70–75.

    Google Scholar 

  23. Kreutzberg, G.W.; Toth, L.; and Kaiya, H. 1975. Acetyl-cholinesterase as a marker for dendritic transport and dendritic secretion. In Physiology and Pathology of Dendrites, ed. G.W. Kreutzberg, pp. 269–281. New York: Raven Press.

    Google Scholar 

  24. Kreutzberg, G.W.; Toth, L.; Weikert, M.; and Schubert, P. 1974. Changes in perineuronal capillaries accompanying chromatolysis of motoneurons. In Pathology of Cerebral Microcirculation, ed. J. Cervos-Navarro, pp. 282–287. Berlin: Walter de Gruyter Verlag.

    Google Scholar 

  25. Kuno, M., andLlinas, R. 1970. Alterations of synaptic action in chromatolysed motoneurons of the cat. J. Physiol. 210: 823–838.

    PubMed  CAS  Google Scholar 

  26. Langford, C.J.; Scheffer, J.W.; Jeffrey, P.L.; and Austin, L. 1980. The in vitro synthesis of RNA within the rat nodose ganglion following vagotomy. J. Neurochem. 34: 531–539.

    Article  PubMed  CAS  Google Scholar 

  27. Lieberman, A.R. 1971. The axon reaction: A review of the principal features of perikaryal responses to axon injury. Int. Rev. Neurobiol. 14: 49–124.

    Article  PubMed  CAS  Google Scholar 

  28. Lieberman, A.R. 1974. Some factors affecting retrograde neuronal responses to axonal lesions. In Essays on the Nervous System. For Prof. J.Z. Young on his 80th birthday, eds. R. Bellairs and E.G. Gray, pp. 71–105. Oxford: Clarendon Press.

    Google Scholar 

  29. Purves, D. 1976. Functional and structural changes in mammalian sympathetic neurones following colchicine application to post-ganglionic nerves. J. Physiol. 259: 159–175.

    PubMed  CAS  Google Scholar 

  30. Purves, D. 1976. Long-term regulation in the vertebrate peripheral nervous system. Int. Rev. Physiol. 10: 125–178.

    CAS  Google Scholar 

  31. Rieske, E., andKreutzberg, G.W. 1 977. Neurite regeneration after cell surgery with laser microbeam irradiation. Brain Res. 148: 478–483.

    Article  Google Scholar 

  32. Ross, R.A.; Joh, G.H.; and Reis, D.J. 1975. Reversible changes in the accumulation and activities of tyrosine hydroxylase and dopamine-ß-hydroxylase in neurons of nucleus locus coeruleus during the retrograde reaction. Brain Res. 92 57–72.

    Article  PubMed  CAS  Google Scholar 

  33. Singer, P., and Mehler, S. 1980. 2-Deoxy(14C)glucose uptake in the rat hypoglossal nucleus after nerve transection. Exp. Neurol. 69: 617–626.

    Article  PubMed  CAS  Google Scholar 

  34. Sumner, B.E.H., and Watson, W.E. 1971. Retraction and expansion of the dendritic tree of motor neurones of adult rats induced in vivo. Nature 233: 273–275.

    Article  PubMed  CAS  Google Scholar 

  35. Torvik, A., and Heding, A. 1969. Effect of actinomycin D on retrograde nerve cell reaction further observations. Acta Neuropath. (Berl.) 14: 62–71.

    CAS  Google Scholar 

  36. Van Gehuchten, A. 1899. Les Phénoménes de reparation dans les centres nerveux apres la section de nerfs péripheriques. Presse Médicale, pp. 54–88.

    Google Scholar 

  37. Watson, W.E. 1976. Cell Biology of Brain. London: Chapman and Hall.

    Google Scholar 

  38. Willard, M.; Wiseman, M.; Levine, J.; and Skene, P. 1979. Axonal transport of actin in rabbit retinal ganglion cells. J. Cell Biol. 81: 581–591.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. G. Nicholls

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Kreutzberg, G.W. (1982). Acute Neural Reaction to Injury. In: Nicholls, J.G. (eds) Repair and Regeneration of the Nervous System. Dahlem Workshop Reports, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68632-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68632-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68634-4

  • Online ISBN: 978-3-642-68632-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics