Skip to main content

Ribosomes, Polysomes and the Translation Process

  • Chapter
Nucleic Acids and Proteins in Plants I

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / A))

Abstract

The molecular constituents most directly determining the structure and function of cells are the proteins, the end products of the expression of the cell’s genetic information. Synthesis of all proteins probably occurs by a process in which ribosomes catalyze the polymerization of amino acids in an alignment determined by the sequence of nucleotides in a nucleic acid template. The initial polypeptide produced is often modified by removal of a peptide fragment, methylation, acetylation, glycosylation, and/or phosphorylation to attain its final functional state. In situations where a protein is destined to pass across a membrane, the protein is often synthesized with a hydrophobic N-terminal region that is discarded after the protein has traversed the membrane. This chapter is concerned with the synthesis of the primary peptide product and focuses on the mechanisms used by the cell to accomplish this synthesis. The processes by which the production of different protein species might be controlled is also briefly considered (see Chapter 4 for post-translational modifications).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist P, Dasgupta R, Shih DS, Zimmern D, Kaesberg P (1979) Two step binding of eukaryotic ribosomes to brome mosaic virus RNA3. Nature (London) 281: 277–282

    Article  CAS  Google Scholar 

  • Amesz H, Goumans H, Haubrich-Morree T, Voorma HO, Benne R (1979) Purification and characterization of a protein factor that reverses the inhibition of protein synthesis by the hemeregulated translational inhibitor in rabbit reticulocyte lysates. Eur J Biochem 98: 513–520

    Article  PubMed  CAS  Google Scholar 

  • Anderson WF, Bosch L, Cohn WE, Lodish H, Merrick WC, Weissbach H, Wittman HG, Wool IG (1977) International symposium on protein synthesis. FEBS Lett 76: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Benne R, Hershey JWB (1978) The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J Biol Chem 253: 3078–3087

    PubMed  CAS  Google Scholar 

  • Benne R, Kasperaitis M, Voorma HO, Ceglarz E, Legocki AB (1980) Initiation factor eIF-2 from wheat germ; purification, functional comparison to eIF-2 from rabbit reticulocytes and phosphorylation of its subunits. Eur J Biochem 104: 109 - 117

    Article  PubMed  CAS  Google Scholar 

  • Bergmann JE, Lodish HF (1979) A kinetic model of protein synthesis; application to hemoglobin synthesis and translational control. J Biol Chem 254: 11927–11937

    PubMed  CAS  Google Scholar 

  • Bollini R, Soffientini AN, Bertani A, Lanzani GA (1974) Some molecular properties of the elongation factor EF1 from wheat embryos. Biochemistry 13: 5421–5425

    Article  PubMed  CAS  Google Scholar 

  • Bosch L, van der Hofstadt GAJM (1979) Initiation of protein synthesis in prokaryotes. Methods Enzymol 60: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Brimacombe R, Stoffler G, Wittman HG (1978) Ribosome structure. Annu Rev Biochem 47: 217–249

    Article  PubMed  CAS  Google Scholar 

  • Brown BA, Ehrenfeld E (1979) Translation of polio virus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal wash. Virology 97: 396–405

    Article  PubMed  CAS  Google Scholar 

  • Buhl W, Sarre TF, Hilse K (1980) Characterization of a native mRNA containing preinitiation complex from rabbit reticulocytes: RNA and protein constituents. Biochem Biophys Res Commun 93: 979–987

    Google Scholar 

  • Capecchi MR (1967) Polypeptide chain termination in vitro. Isolation of a release factor. Proc Natl Acad Sci USA 58: 1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Caskey CT (1977) Peptide chain termination. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis. Academic Press, London New York, pp 443–465

    Google Scholar 

  • Caskey CT, Beaudet AL, Pate WP (1974) Mammalian release factor; in vitro assay and purification. Methods Enzymol 30: 293–303

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19: 548–555

    Article  PubMed  CAS  Google Scholar 

  • Debenham PG, Pongs O, Travers AA (1980) Formylmethionine-tRNA alters RNA polymerase specificity. Proc Natl Acad Sci USA 77: 870–874

    Article  PubMed  CAS  Google Scholar 

  • Di Segni G, Rosen H, Kaempfer R (1979) Competition between a- and β-globin messenger ribonucleic acids for eucaryotic initiation factor 2. Biochemistry 18: 2847–2854

    Article  PubMed  Google Scholar 

  • Dobberstein B, Blobel G, Chua NH (1977) In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5 bisphosphate carboxylase ofChlamydomo- nas reinhardtii. Proc Natl Acad Sci USA 74: 1082–1085

    Article  PubMed  CAS  Google Scholar 

  • Dudock BS, Katz G (1969) Large oligonucleotide sequences in wheat germ phenylalanine transfer ribonucleic acid. J Biol Chem 244: 3069–3074

    PubMed  CAS  Google Scholar 

  • Eckhardt H, Luhrmann R (1979) Blocking of the initiation of protein biosynthesis by a pentanucleotide complementary to the 3’ end ofEscherichia coli 16S rRNA. J Biol Chem 254:11, 185–11, 188

    Google Scholar 

  • Filipowicz W, Haenni A-L (1979) Binding of ribosomes to 5’-terminal leader sequences of eukaryotic messenger RNAs. Proc Natl Acad Sci USA 76: 3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Giesen M, Roman R, Seal SN, Marcus A (1976) Formation of an 80S methionyl-tRNA initiation complex with soluble factors from wheat germ. J Biol Chem 251: 6075–6081

    PubMed  CAS  Google Scholar 

  • Goldman E, Holmes WM, Hatfield GW (1979) Specificity of codon recognition byEscherichia coli tRNALeu-isoaccepting species as determined by protein synthesis in vitro directed by phage RNA. J Mol Biol 129: 567–585

    Article  PubMed  CAS  Google Scholar 

  • Gould AR, Symons RH (1978) Alfalfa mosaic virus RNA. Determination of the sequence homology between the four RNA species and a comparison with the four RNA species of cucumber mosaic virus. Eur J Biochem 91: 269–278

    Google Scholar 

  • Grasmuk H, Noland RD, Drews J (1977) Further evidence that elongation factor 1 remains bound to ribosomes during peptide chain elongation. Eur J Biochem 79: 93–102

    Article  PubMed  CAS  Google Scholar 

  • Gross M (1979) Control of protein synthesis by hemin. Evidence that the hemin-controlled translational repressor inhibits formation of 80S initiation complexes from 48S intermediate initiation complexes. J Biol Chem 254: 2370–2377

    PubMed  CAS  Google Scholar 

  • Guilley H, Briand JP (1978) Nucleotide sequence of turnip yellow mosaic virus coat protein mRNA. Cell 15: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Haro de C, Ochoa S (1978) Mode of action of the hemin-controlled inhibitor of protein synthesis: studies with factors from rabbit reticulocytes. Proc Natl Acad Sci USA 75: 2713–2716

    Google Scholar 

  • Hatfield D, Rice M (1978) Patterns of codon recognition by isoacceptor aminoacyl tRNAs from wheat germ. Nucleic Acids Res 5: 3491–3502

    Article  PubMed  CAS  Google Scholar 

  • Heindell HC, Liu A, Paddock GV, Studnicka GM, Salser WA (1978) The primary sequence of rabbit a-globin mRNA. Cell 15: 43–54

    Article  PubMed  CAS  Google Scholar 

  • Herson D, Schmidt A, Seal SN, Marcus A, van Vloten-Doting L (1979) Competitive mRNA translation in an in vitro system from wheat germ. J Biol Chem 254: 8245–8249

    PubMed  CAS  Google Scholar 

  • Hirashima A, Kaji A (1973) Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem 248: 7580–7587

    PubMed  CAS  Google Scholar 

  • Hofstad van der GAJM, Foekens JA, Bosch L, Voorma HO (1977) The involvement of a complex between formylmethionyl-tRNA and initiation factor IF-2 in prokaryotic initiation. Eur J Biochem 77: 69–75

    Article  PubMed  Google Scholar 

  • Hofstad van der GAJM, Buitenhek A, Bosch L, Voorma HO (1978a) Initiation factor IF-3 and the binary complex between initiation factor IF-2 and formylmethionyl-tRNA are mutually exclusive on the 30-S ribosomal subunit. Eur J Biochem 89: 213–220

    Article  PubMed  Google Scholar 

  • Hofstad van der GAJM, Buitenhek A, van den Elsen PJ, Voorma HO, Bosch L (1978 b) Binding of labelled initiation factor IF-1 to ribosomal particles and the relationship to the mode of IF-1 action in ribosome dissociation. Eur J Biochem 89:221–228

    Article  PubMed  Google Scholar 

  • Kabat D, Chappell MR (1977) Competition between globin messenger ribonucleic acids for a discriminating initiation factor. J Biol Chem 252: 2685–2690

    Google Scholar 

  • Kaempfer R, Jay G (1979) Binding of messenger RNA in initiation of prokaryotic translation. Methods Enzymol 60: 332–343

    Article  PubMed  CAS  Google Scholar 

  • Keren-Zur M, Boublik M, Ofengand J (1979) Localization of the decoding region on the 30SEscherichia coli ribosomal subunit by affinity immunoelectron microscopy. Proc Natl Acad Sci USA 76: 1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Khorana HG, Buchi H, Ghosh H, Gupta N, Jacob TM, Kossel H, Morgan R, Narang SA, Ontsuka E, Wells HD (1966) Polynucleotide synthesis and the genetic code. Cold Spring Harbor Symp Quant Biol 31: 39–49

    PubMed  CAS  Google Scholar 

  • Kozak M (1978) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15: 1109–1123

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1980) Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19: 79–90

    Article  PubMed  CAS  Google Scholar 

  • Leaver C, Dyer J A (1974) Caution in the interpretation of plant ribosomes studies. Biochem J 144: 165–167

    PubMed  CAS  Google Scholar 

  • Lingappa VR, Cunningham BA, Jazurinski SM, Hopp TP, Blobel G, Edelman GM (1979a) Cell-free synthesis and segregation of B2-microglobulin. Proc Natl Acad Sci USA 76: 3651–3655

    Article  PubMed  CAS  Google Scholar 

  • Lingappa VR, Lingappa JR, Blobel G (1979 b) Chicken ovalbumin contains an internal signal sequence. Nature (London) 281:117–121

    Article  PubMed  CAS  Google Scholar 

  • Lloyd MA, Osborne JC, Safer B, Powell GM, Merrick WC (1980) Characteristics of eukaryotic initiation factor 2 and its subunits. J Biol Chem 255: 1189–1193

    PubMed  CAS  Google Scholar 

  • Lodish HF, Rothman JE (1979) The assembly of cell mebranes. Sci Am 240: 48–63

    Article  PubMed  CAS  Google Scholar 

  • Maccecchini ML, Rudin Y, Blobel G, Schatz G (1979) Import of proteins into mitochondria: precursor forms of the extramitochondrially made Fl-ATPase subunits in yeast. Proc Natl Acad Sci USA 76: 343–347

    Article  PubMed  CAS  Google Scholar 

  • Macino G, Coruzzi G, Nobrega FG, Li M, Tzagaloff A (1979) Use of the UGA terminator as a tryptophan codon in yeast mitochondria. Proc Natl Acad Sci USA 76: 3784–3785

    Article  PubMed  CAS  Google Scholar 

  • Menninger JR, Walker C (1974) An assay for protein chain termination using peptidyl- tRNA. In: Moldave L, Grossman L (eds). Methods Enzymol 30: 303–310

    Google Scholar 

  • Merrick WC (1979) Evidence that a single GTP is used in the formation of 80S initiation complexes. J Biol Chem 254: 3708–3711

    PubMed  CAS  Google Scholar 

  • Nirenberg M, Leder P (1964) RNA codeword and protein synthesis. Science 145: 1399–1407

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg M, Matthei J (1961) Dependence of cell-free protein synthesis inE. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47: 1588–1602

    Article  PubMed  CAS  Google Scholar 

  • Ofengand J (1977) tRNA and aminoacyl-tRNA synthetases. In: Weissbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis, Academic Press, London New York, pp 7–79

    Google Scholar 

  • Olson HM, Glitz DG (1979) Ribosome structure: localization of 3’ end of RNA in small subunit by immunoelectronmicroscopy. Proc Natl Acad Sci USA 76: 3769–3773

    Article  PubMed  CAS  Google Scholar 

  • Pelham HRB (1978) Leaky UAG termination condon in tobacco mosaic virus RNA. Nature (London) 272: 469–471

    Article  CAS  Google Scholar 

  • Pelham HRB (1979 a) Synthesis and protoeolytic processing of cowpea mosaic virus proteins in reticulocyte lysates. Virology 96:463–477

    Google Scholar 

  • Pelham HRB (1979b) Translation of tobacco rattle virus RNAs in vitro: four proteins from three RNAs. Virology 97: 256–265

    Article  PubMed  CAS  Google Scholar 

  • Peterson DT, Merrick WC, Safer B (1979) Binding and release of radiolabeled eukaryotic initiation factors 2 and 3 during 80S initiation complex formation. J Biol Chem 254: 2509–2516

    PubMed  CAS  Google Scholar 

  • Peterson PJ, Fowden L (1963) Different specificities of proline activating enzymes from some plant species. Nature (London) 200: 148–151

    Article  CAS  Google Scholar 

  • Ramberg ES, Ishaq M, Rulf S, Mueller B, Horowitz J (1978) Inhibition of transfer RNA function by replacement of uridine and uridine-derived nucleosides with 5-fluorouridine. Biochemistry 17: 3978–3985

    Article  PubMed  CAS  Google Scholar 

  • Ranu RS, Wool IG (1976) Preparation and characterization of eukaryotic initiation factor EIF-3. J Biol Chem 251: 1926–1935

    PubMed  CAS  Google Scholar 

  • Ranu RS, London IM, Das A, Dasgupta A, Majumder A, Ralston R, Roy R, Gupta NK (1978) Regulation of protein synthesis in rabbit reticulocyte lysates by the heme-regulated protein kinase: inhibition of interaction of Met-tRNA met binding factor with another initiation factor in formation of Met-tRNAfmet.40S ribosomal subunit complexes. Proc Natl Acad Sci USA 75: 745–749

    Article  PubMed  CAS  Google Scholar 

  • Reddington MA, Tate WP (1979) A polypeptide chain release factor from the undeveloped cyst of the Brine shrimp,Artemia Salina. FEBS Lett 97: 335–338

    Article  PubMed  CAS  Google Scholar 

  • Rich A, Kim SH (1978) The three-dimensional structure of transfer RNA. Sci Am 238: 52–62

    Article  PubMed  CAS  Google Scholar 

  • Safer B, Adams SL, Anderson FW, Merrick WC (1975) Binding of Met-tRNAf and GTP to homogeneous initiation factor MP. J Biol Chem 250: 9076–9082

    PubMed  CAS  Google Scholar 

  • Safer B, Kemper W, Jagus R (1979) The use of [14C]eukaryotic initiation factor 2 to measure the endogenous pool size of eukaryotic initiation factor 2 in rabbit reticulocyte lysate. J Biol Chem 254: 8091–8094

    PubMed  CAS  Google Scholar 

  • Salditt-Georgieff M, Harpold M, Chen-Kiang S, Darnell JE Jr (1980) The addition of 5’ cap structure occurs early in hnRNA synthesis and prematurely terminated molecules are capped. Cell 19: 69–78

    Article  PubMed  CAS  Google Scholar 

  • Salomon R, Bar-Joseph M, Soreq H, Gozes I, Lettauer UZ (1978) Translation in vitro of carnation mottle virus RNA. Virology 90: 288–298

    Article  PubMed  CAS  Google Scholar 

  • Salvato MS, Fraenkel-Conrat H (1977) Translation of tobacco necrosis virus and its satellite in a cell-free wheat germ system. Proc Natl Acad Sci USA 74: 2288–2292

    Article  PubMed  CAS  Google Scholar 

  • Samols DR, Hagenbuchle O, Gage LP (1979) Homology of the 3’ terminal sequences of the 18S rRNA ofBombyx mori and the 16S rRNA ofEscherichia coli. Nucleic Acids Res 7: 1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson T, Elias P, Lustig F, Axberg T, Folsch G, Akesson B, Lagerkvist U (1980) Aberrations of the classic codon reading scheme during protein synthesis in vitro. J Biol Chem 255: 4583–4588

    PubMed  CAS  Google Scholar 

  • Schreier MH, Erni B, Staehlin T (1977) Initiation of mammalian protein synthesis. I. Purification and characterization of seven initiation factors. J Mol Biol 116: 727–753

    Google Scholar 

  • Seal SN, Marcus A (1972) Reactivity of ribosomally bound methionyl-tRNA with puromycin and the locus of pactamycin inhibition of chain initiation. Biochem Biophys Res Comm 46: 1895–1902

    Article  PubMed  CAS  Google Scholar 

  • Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Shih DS, Kaesberg P (1976) Translation of the RNAs of Brome mosaic virus: the monocistronic nature of RNA 1 and RNA 2. J Mol Biol 103: 77–88

    Article  PubMed  CAS  Google Scholar 

  • Slobin LI (1979) Eucaryotic elongation factor Ts is an integral component of rabbit reticulocyte elongation factor 1. Eur J Biochem 96: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ (1979) Eukaryotic mRNA cap binding protein purification by affinity chromatography on Sepharose-coupled m7 GDP. Proc Natl Acad Sci USA 76: 4345–4349

    Article  PubMed  CAS  Google Scholar 

  • Spremulli LL, Walthall BJ, Lax SR, Ravel JM (1979) Partial purification of the factors required for the initiation of protein synthesis in wheat germ. J Biol Chem 254: 143–148

    PubMed  CAS  Google Scholar 

  • Stoffler G, Wittmann HG (1977) Primary structure and three dimensional arrangement of proteins within theEscherichia coli ribosome. In: Weisbach H, Pestka S (eds) Molecular mechanisms of protein biosynthesis. Academic Press, London New York, pp 117–202

    Google Scholar 

  • Stringer EA, Chaudhuri A, Maitra U (1979) Purified eukaryotic initiation factor 2 from calf liver consits of two polypeptide chains of 48,000 and 38,000 daltons. J Biol Chem 254: 6845–6848

    PubMed  CAS  Google Scholar 

  • Sundquist IC, Staehlin T (1975) Structure and function of free 40S ribosomal subunits: characterization of initiation factors. J Mol Biol 99: 401–418

    Article  Google Scholar 

  • Thompson HA, Sadnik I, Scheinbuks J, Moldave K (1977) Studies on native ribosomal subunits from rat liver. Purification and characterization of a ribosomal dissociation factor. Biochemistry 16: 2221–2230

    Google Scholar 

  • Thompson R, Stone R (1977) Proofreading of the codon-anticodon interaction of ribosomes. Proc Natl Acad Sci USA 74: 198–202

    Article  PubMed  CAS  Google Scholar 

  • Thach SS, Thach RE (1971) Translocation of messenger RNA and “accommodation”of fMet-tRNA. Proc Natl Acad Sci USA 68: 1791–1795

    Article  PubMed  CAS  Google Scholar 

  • Trachsel H, Staehlin T (1978) Binding and release of eukaryotic initiation factor eIF-2 and GTP during protein synthesis initiation. Proc Natl Acad Sci USA 75: 204–208

    Article  PubMed  CAS  Google Scholar 

  • Trachsel H, Erni B, Schreier MH, Staehlin T (1977) Initiation of mammalian protein synthesis. II The assembly of the initiation complex with purified initiation factors. J Mol Biol 116: 755–767

    Google Scholar 

  • Trachsel H, Sonenberg N, Shatkin AJ, Rose JK, Leong K, Bergmann JE, Gordon J, Baltimore D (1980) Purification of a factor that restores translation of vesicular stomatitis virus mRNA in extracts from poliovirus infected HeLa cells. Proc Natl Acad Sci USA 77: 770–774

    Article  PubMed  CAS  Google Scholar 

  • Turnbough CL Jr, Neil RJ, Landsberg R, Ames BN (1979) Pseudouridylation of tRNAs and its role in regulation inSalmonella typhimurium. J Biol Chem 254: 5111–5119

    PubMed  CAS  Google Scholar 

  • Weigert MG, Lanka E, Garen A (1967) Amino acid substitutions resulting from suppression of nonsense mutations. Ill Tyrosine insertion by the SO-4 gene. J Mol Biol 23: 401–404

    Article  PubMed  CAS  Google Scholar 

  • Wittmann HG, Witmann-Liebold B (1966) Protein chemical studies of two RNA viruses and their mutants. Cold Spring Harbor Symp Quant Biol 31: 163–172

    PubMed  CAS  Google Scholar 

  • Yarus M (1979) Relationship of the accuracy of aminoacyl-tRNA synthesis to that of translation. In: Schimmel PR, Soil D, Abelson JN (eds) Transfer RNA. Cold Spring Harbor Monogr, pp 501–515

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marcus, A. (1982). Ribosomes, Polysomes and the Translation Process. In: Boulter, D., Parthier, B. (eds) Nucleic Acids and Proteins in Plants I. Encyclopedia of Plant Physiology, vol 14 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68237-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68237-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68239-1

  • Online ISBN: 978-3-642-68237-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics