Skip to main content

Microtubule Proteins and P-Proteins

  • Chapter
Nucleic Acids and Proteins in Plants I

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / A))

Abstract

There are no known functional or structural relationships between tubulins and P-proteins, even though both groups of proteins share the general characteristic of appearing as linear macromolecular assemblies. After actin, tubulin is possibly the second most commonly occurring protein of the non-specialized eukaryote cell; P-protein on the other hand is the major intracellular polymeric component of a highly specialized plant cell, the sieve tube. Each system offers a model situation, regulated temporally and spatially, for studying the assembly of a relatively few distinct components into highly ordered cellular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman MR, Borisy GG, Shelanski ML, Weisenberg RC, Taylor EW (1968) Cytoplasmic filaments and tubules. Fed Proc 27: 1186–1193

    PubMed  CAS  Google Scholar 

  • Aikman DP, Wildon DC (1978) Phloem transport: The surface flow hypothesis. J Exp Bot 29: 387–393

    Google Scholar 

  • Allen AK (1979) A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has a specificity for β-1, 4-linked N-acetylglucosamine oligosaccharides. Biochem J 183: 133–137

    CAS  Google Scholar 

  • Amos LA, Linck RW, Klug A (1976) Molecular structure of flagellar microtubules. In: Goldman R, Pollard T, Rosenbaum JL (eds) Cell motility. Book C. Cold Spring Habror Lab, pp 847–867

    Google Scholar 

  • Anderson PJ (1979) The structure and amount of tubulin in cells and tissues. J Biol Chem 254: 2168–2171

    PubMed  CAS  Google Scholar 

  • Baccetti B, Burrini AG, Dalai R, Pallini V (1979) The dynein electrophoretic bands in axonemes naturally lacking the inner or the outer arm. J Cell Biol 80: 334–340

    PubMed  CAS  Google Scholar 

  • Bajer A, Molè-Bajer J (1975) Lateral movements in the spindle and the mechanism of mitosis. In: Inoue S, Stephens RE (eds) Molecules and cell movement. Raven Press, New York, pp 77–96

    Google Scholar 

  • Baum P, Thorner J, Honig L (1978) Identification of tubulin from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 75: 4962–4966

    PubMed  CAS  Google Scholar 

  • Becker D, Kluge M, Ziegler H (1971) Der Einbau von 32PO42- in organische Verbindungen durch Siebröhrensaft. Planta 99: 154–162

    CAS  Google Scholar 

  • Behnke H-D (1969) Über den Feinbau und die Ausbreitung der Siebröhren-Plasmafilamente und über Bau und Differenzierung der Siebporen bei einigen Monocotylen und bei Nuphar. Protoplasma 68: 377–402

    Google Scholar 

  • Behnke H-D (1975) Phloem tissue and sieve elements in algae, mosses and ferns. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. NATO Adv Study Inst Ser, Plenum Press, New York, London, pp 187–210

    Google Scholar 

  • Bentwood BJ, Cronshaw J (1976) Biochemistry and cytochemical localisation of acid phosphatase in the phloem of Nicotiana tabacum. Planta 130: 97–104

    CAS  Google Scholar 

  • Bentwood BJ, Cronshaw J (1978) Cytochemical localisation of adenosine triphosphatase in the phloem of Pisum sativum and its relation to the function of transfer cells. Planta 140: 111–120

    CAS  Google Scholar 

  • Berkowitz SA, Katagiri J, Binder HK, Williams RC Jnr (1977) Separation and characterization of microtubule proteins from calf brain. Biochemistry 16: 5610–5617

    PubMed  CAS  Google Scholar 

  • Beyenbach J, Weber C, Kleinig H (1974) Sieve tube proteins from Cucurbita maxima. Planta 119: 113–124

    CAS  Google Scholar 

  • Bhattacharyya B, Wolff J (1976) Polymerisation of membrane tubulin. Nature (London) 264: 576–577

    CAS  Google Scholar 

  • Bibring T, Baxandall J, Denslow S, Walker B (1976) Heterogeneity of the α subunit of tubulin within a single organism. J Cell Biol 69: 301–312

    PubMed  CAS  Google Scholar 

  • Bieleski RL (1969) Phosphorus compounds in translocating phloem. Plant Physiol 44:497–502

    PubMed  CAS  Google Scholar 

  • Binder LI, Rosenbaum JL (1978) In vitro assembly of flagellar outer doublet tubulin. J Cell Biol 79: 500–515

    PubMed  CAS  Google Scholar 

  • Binder LI, Dentler WK, Rosenbaum JL (1975) Assembly of chick brain tubulin onto flagellar microtubules from Chlamydomonas and sea urchin sperm. Proc Natl Acad Sci USA 72: 1122–1126

    PubMed  CAS  Google Scholar 

  • Bloodgood RA (1974) Resorption of organelles containing microtubules. Cytobios 9: 142–161

    PubMed  CAS  Google Scholar 

  • Bloodgood RA, Rosenbaum JL (1976) Initiation of brain tubulin aasembly by a higher molecular weight flagellar protein factor. J Cell Biol 71: 322–331

    PubMed  CAS  Google Scholar 

  • Borgers M, DeBrabander M (eds) (1975) Microtubules and microtubule inhibitors. North-Holland, Amsterdam Oxford

    Google Scholar 

  • Borisy GG, Olmsted JB, Marcum JM, Allen C (1974) Microtubule assembly in vitro. Fed Proc 33: 167–174

    PubMed  CAS  Google Scholar 

  • Brodie AE, Potter J, Reed DJ (1979) Effects of vinblastine, oncodazole, porcarbazine, chlorambucil and bleomycin in vivo on colchicine binding activity of tubulin. Life Sci 24: 1547–1554

    PubMed  CAS  Google Scholar 

  • Bryan J (1974) Biochemical properties of microtubules. Fed Proc 33: 152–157

    PubMed  CAS  Google Scholar 

  • Bulinski JC, Borisy GG (1970) Self-assembly of microtubules in extracts of cultured HeLa cells and the identification of HeLa microtubule-associated proteins. Proc Natl Acad Sci USA 76: 293–297

    Google Scholar 

  • Burgess J (1970) The occurrence of cross-linked microtubules in a higher plant cell. Planta 92: 25–28

    Google Scholar 

  • Callow JA (1976) Plant lectins. In: Smith H (ed) Commentaries in plant science. Pergamon Press, Oxford, pp 221–233

    Google Scholar 

  • Cappucinelli P, Hames BD (1978) Characterization of colchicine-binding activity in Dictyostelium discoideum. Biochem J 169: 499–504

    Google Scholar 

  • Caron JM, Berlin RD (1979) Interaction of microtubule proteins with phospholipid vesicles. J Cell Biol 81: 665–672

    PubMed  CAS  Google Scholar 

  • Catesson AM (1973) Observations cytochimique sur les tubes criblés de quelques angiospermes. J Microsc 16: 95–104

    CAS  Google Scholar 

  • Clayton L, Pogson CI, Gull K (1979) Microtubule proteins in the yeast Saccharomyces cerevisiae. FEBS Lett 106: 67–70

    PubMed  CAS  Google Scholar 

  • Cleveland DW, Hwo S-Y, Kirschner MW (1977a) Purification of tau, a micro tubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    Google Scholar 

  • Cleveland DW, Hwo S-Y, Kirschner MW (1977b) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247

    CAS  Google Scholar 

  • Crane HR (1950) Principles and problems of biological growth. Sci Mon 70: 376–389

    Google Scholar 

  • Cronshaw J (1975) P-proteins. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. NATO Adv Study Inst Ser, Plenum Press, New York London, pp 79–147

    Google Scholar 

  • Cronshaw J, Anderson R (1971) Phloem differentiation in tobacco pith culture. J Ultrastruct Res 34: 244–259

    PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K (1967) Tubullar and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34: 801–816

    PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K ( 1968 a) P-protein in the phloem of Cucurbita. I. The development of P-protein bodies. J Cell Biol 38: 25–39

    Google Scholar 

  • Cronshaw J, Esau K ( 1968 b) P-protein in the phloem of Cucurbita. II. The P-protein of mature sieve elements. J Cell Biol 38: 292–303

    Google Scholar 

  • Cronshaw J, Gilder J, Stone D (1973) Fine structural studies of P-proteins in Cucurbita, Cucumis and Nicotiana. J Ultrastruct Res 45: 192–205

    PubMed  CAS  Google Scholar 

  • Daleo GR, Piras MM, Piras R (1974) The presence of phospholipids and diglyceride kinase activity in microtubules from different tissues. Biochem Biophys Res Commun 61: 1043–1050

    PubMed  CAS  Google Scholar 

  • David-Pfeuty T, Simon C, Pantaloni D (1979) Effect of antimitotic drugs on tubulin GTPase activity and self-assembly. J Biol Chem 254: 11696–11702

    PubMed  CAS  Google Scholar 

  • Dentler WL, Rosenbaum JL (1977) Flagellar elongation and shortening in Chlamydomonas. III. Structures attached to the tips of flagellar microtubules and their relationship to the directionality of flagellar microtubule assembly. J Cell Biol 74: 747–759

    Google Scholar 

  • Dentler WL, Granett S, Rosenbaum JL (1975) Ultrastrucutral localization of the high molecular proteins associated with in vitro-assembled brain microtubules. J Cell Biol 65: 237–241

    PubMed  CAS  Google Scholar 

  • Deysson G (1968) Antimitotic substances. Int Rev Cytol 24: 99–148

    PubMed  CAS  Google Scholar 

  • Dickson RE (1977) EDTA–promoted exudation of 14C-labelled compounds from detached cottonwood and bean leaves as related to translocation. Can J Bot 7: 277–284

    CAS  Google Scholar 

  • Dustin P (1978) Microtubules. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eipper BA (1972) Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. Proc Natl Acad Sci USA 69: 2283–2287

    PubMed  CAS  Google Scholar 

  • Eipper BA (1974) Properties of rat brain tubulin. J Biol Chem 249:1407–1416]

    Google Scholar 

  • Eipper BA (1975) Purification of rat brain tubulin. Ann NY Acad Sci 253: 239–246

    PubMed  CAS  Google Scholar 

  • Erickson HP (1976) Facilitation of microtubule assembly by polycations. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Lab, pp 1069–1080

    Google Scholar 

  • Erickson HP, Scott B (1977) Microtubule assembly in DEAE dextran: effect of charge density and MW of the polycation. Biophys J 17: 274a

    Google Scholar 

  • Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Handbuch der Pflanzenanatomie Bd V, Teil 2. Borntraeger, Berlin

    Google Scholar 

  • Esau K (1975) The ploem of Nelumbo nucifera Gaertn. Ann Bot (London) 39: 901–913

    Google Scholar 

  • Esau K (1978 a) Developmental features of the primary phloem in Phaseolus vulgaris L. Ann Bot (London) 42:1–13

    Google Scholar 

  • Esau K (1978 b) The protein inclusions in sieve elements of cotton (Gossypium hirsutum L.). J Ultrastruct Res 63:224–235

    Google Scholar 

  • Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic Virus-infected Nicotiana. Virology 33: 26–35

    PubMed  CAS  Google Scholar 

  • Esau K, Gill RH (1973) Correlation in differentiation of protophloem sieve elements of Allium cepa root. J Ultrastruct Res 44: 310–328

    PubMed  CAS  Google Scholar 

  • Eschrich W (1975) Sealing systems in phloem. In: Zimmermann MH, Milburn J A (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, new series, Vol 1. Springer, Berlin Heidelberg New York, pp 39–56

    Google Scholar 

  • Eschrich W, Heyser W (1975) Biochemistry of phloem constituents. In: Zimmerman MH, Milburn J A (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, new series Vol 1. Springer, Berlin Heidelberg New York, pp 101–136

    Google Scholar 

  • Eschrich W, Evert RF, Heyser W (1971) Proteins of the sieve-exudate of Cucurbita maxima. Planta 100: 208–221

    CAS  Google Scholar 

  • Evert RF (1977) Phloem structure and histochemistry. Ann Rev Physiol 28: 199–222

    CAS  Google Scholar 

  • Evert RF, Deshpande BP (1969) Electron microscope investigation of sieve element ontogeny and structure in Ulmus americana. Protoplasma 68: 403–432

    Google Scholar 

  • Evert RF, Eschrich W, Eichorn SE (1973) P-protein distribution in mature sieve elements of Cucurbita maxima. Planta 109: 193–210

    CAS  Google Scholar 

  • Feit H, Shelanski ML (1975) Is tubulin a glycoprotein? Biochem Biophys Res Commun 66: 920–927

    PubMed  CAS  Google Scholar 

  • Fensom DS (1975) Other possible mechanisms. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I Phloem transport. Encyclopedia of plant physiology new series Vol 1. Springer, Berlin Heidelberg New York, pp 354–366

    Google Scholar 

  • Figier J (1968) Localisation infrastructurale de la phosphomonoesterase acide dans la stipule de Vicia faba L. au niveau du nectaire. Planta 83: 60–79

    Google Scholar 

  • Filner P, Yadav NS (1979) Role of microtubules in intracellular movements. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, new series Vol 7. Springer, Berlin Heidelberg New York, pp 95–113

    Google Scholar 

  • Flanagan D, Warr JR (1977) Colchicine binding of a high-speed supernatant of Chlamydomonas reinhardi. FEBS Lett 80: 14–18

    PubMed  CAS  Google Scholar 

  • Forgue ST, Dahl JL (1979) Rat brain tubulin: subunit heterogeneity and phosphorylation. J Neurochem 32: 1015–1025

    PubMed  CAS  Google Scholar 

  • Freundlich A (1974) No polysaccharide demonstrated in filamentous structures in sieve elements by Thierys periodic acid-thiocarbohyrazide-silver proteinate method for electron microscopy. Planta 118: 85–87

    CAS  Google Scholar 

  • Fulton C, Simpson PA (1976) Selective synthesis and utilisation of flagellar tubulin. The multi-tubulin hypothesis. In: Goldman R, Pollard T, Rosenbaum JL (eds) Cell motility. Book C. Cold Spring Harbor Lab, pp 987–1005

    Google Scholar 

  • Gardner DC, Peel A J (1972) Some observations on the role of ATP in sieve tube translocation. Planta 107: 217–226

    CAS  Google Scholar 

  • Garland DL (1978) Kinetics and mechanisms of colchicine binding to tubulin: evidence for ligand-induced conformational change. Biochemistry 17: 4266–4271

    PubMed  CAS  Google Scholar 

  • Gibbons IR, Rowe A J (1965) Dynein: a protein with adenosine triphosphatase activity from cilia. Science 149: 424–426

    PubMed  CAS  Google Scholar 

  • Gibbons IR, Fronk E, Gibbons BH, Ogawa K (1976) Multiple forms of dynein in sea urchin sperm flagella. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Lab, pp 915–932

    Google Scholar 

  • Gietl C, Krauss H, Ziegler H (1979) Affinity chromatography of a lectin from Robinia pseudoacacia L. and demonstration of lectins in sieve tube sap from other tree species. Planta 144: 367–372

    CAS  Google Scholar 

  • Gilder J, Cronshaw J (1973a) Adenosine triphosphatase in the phloem of Cucurbita. Planta 110:189–204

    Google Scholar 

  • Gilder J, Cronshaw J (1973 b) The distribution of adenosine triphosphatase activity in differentiating and mature phloem cells of Nicotiana tabacum and its relationship to phloem transport. J Ultrastruct Res 44:388–404

    Google Scholar 

  • Gilder J, Cronshaw J (1974) A biochemical and cytochemical study of adenosine triphosphatase activity in the phloem of Nicotiana tabacum. J Cell Biol 60: 221–235

    PubMed  CAS  Google Scholar 

  • Gillespie E (1975) The mechanism of tubulin breakdown in vitro. FEBS Lett 58: 119–121

    PubMed  CAS  Google Scholar 

  • Goldman R, Pollard T, Rosenbaum J (eds) (1976) Cell motility. Book C Cold Spring Harbor Lab, pp 839–1373

    Google Scholar 

  • Goodman DBP, Rasmussen H, Dibella F, Guthrow CE Jnr (1970) Cyclic adenosine 3-5- monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc Natl Acad Sci USA 67: 652–659

    PubMed  CAS  Google Scholar 

  • Gould RR, Borisy GG (1978) Quantitative initiation of microtubule assembly by chromosomes of CHO cells. Exp Cell Res 113: 369–374

    PubMed  CAS  Google Scholar 

  • Gunning BES, Hardham AR, Hughes JE (1978) Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root-tip cells, and an hypothesis on the development of cortical arrays of microtubules. Planta 143: 161–179

    Google Scholar 

  • Haber JE, Peloquin JG, Halvorson HO, Borisy GG (1972) Colcemid inhibition of cell growth and the characterization of a colcemid binding activity in Saccharomyces cerevisiae. J Cell Biol 58: 355–367

    Google Scholar 

  • Hall SM, Baker A (1972) The chemical composition of Ricinus phloem exudate. Planta 106: 131–140

    CAS  Google Scholar 

  • Hara I, Ohmiya M, Matsubara H (1978) Pumpkin (Cucurbita sp.) seed globulin. III. Comparison of subunit structures among seed globulins of various Cucurbita species and characterization of peptide components. Plant Cell Physiol 19: 237–243

    CAS  Google Scholar 

  • Hardham AR, Gunning BES (1978) Structure of cortical microtubule arrays in plant cells. J Cell Biol 77: 14–34

    PubMed  CAS  Google Scholar 

  • Hart JW, Sabins DD (1973) Colchicine binding protein from phloem and xylem of a higher plant. Planta 109: 147–152

    CAS  Google Scholar 

  • Hart JW, Sabnis DD (1976a) Colchicine and plant microtubules: a critical evaluation. Curr Adv Plant Sci 26: 1095–1104

    Google Scholar 

  • Hart JW, Sabnis DD (1976 b) Binding of colchicine and lumicolchicine to components in plant extracts. Phytochemistry 15:1897–1901

    Google Scholar 

  • Hart JW, Sabnis DD (1976 c) Colchicine binding activity in extracts of higher plants. J Exp Bot 27:1353–1360

    Google Scholar 

  • Hart JW, Sabnis DD (1977) Microtubules. In: Smith H (ed) The molecular biology of plant cells. Blackwell, Oxford, pp 160–181

    Google Scholar 

  • Heath IP (1974) A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J Theor Biol 48:445149

    Google Scholar 

  • Hepler PK (1976) Plant microtubules. In: Bonner J, Varner JE (eds) Plant biochemistry. Academic Press, New York London, pp 147–187

    Google Scholar 

  • Hepler PK, Mcintosh JR, Cleveland S (1970) Intermicrotubule bridges in mitotic spindle apparatus. J Cell Biol 45: 438–444

    PubMed  CAS  Google Scholar 

  • Hepler PK, Palevitz BA (1974) Microtubules and microfilaments. Ann Rev Plant Physiol 25: 309–362

    CAS  Google Scholar 

  • Herzog W, Weber K (1978) Microtubule formation by pure tubulin in vitro. The influence of dextran and poly(ethylene glycol). Eur J Biochem 91: 249–254

    Google Scholar 

  • Heyser W, Eschrich W, Huttermann A, Evert FR, Burchardt R, Fritz E, Heyser R (1974) Phosphodiesterase in sieve-tube exudate of Cucurbita maxima. Z Pflanzenphysiol 71:413–423

    Google Scholar 

  • Himes RH, Burton PR, Kersey RN, Pierson GB (1976) Brain tubulin polymerization in the absence of “Cmicrotubule-associated proteins”. Proc Natl Acad Sci USA 73:4397–4399

    Google Scholar 

  • Hotta Y, Shepard J (1973) Biochemical aspects of colchicine action on meiotic cells. Mol Gen Genet 122: 243–260

    PubMed  CAS  Google Scholar 

  • Hyams JS, Borisy GG (1978) Nucleation of microtubules in vitro by isolated spindle pole bodies of the yeast Saccharomyces cerevisiae. J Cell Biol 78: 401–414

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Steiner M (1979) Phosphorylation and protein kinase activity of platelet tubulin. J Biol Chem 254: 66–74

    PubMed  CAS  Google Scholar 

  • Ilker R, Currier HP (1975) Histochemical studies of an inclusion body and P-protein in phloem of Xylosma congestum. Protoplasma 85: 127–132

    Google Scholar 

  • Inoué S, Stephens RE (eds) (1975) Molecules and cell movement. Vol 30. Soc Gen Physiol Series, Raven Press, New York

    Google Scholar 

  • Jacobs M, Smith H, Taylor EW (1974) Tubulin: nucleotide binding and enzymic activity. J Biol 89: 455–468

    CAS  Google Scholar 

  • Johnson RPC (1978) The microscopy of P-protein filaments in freeze-etched sieve pores. Brownian motion limits resolution of their positions. Planta 143: 191–205

    Google Scholar 

  • Kauss H (1976) Plant lectins (phytohaemagglutinins). Fortschr Bot 36: 58–70

    Google Scholar 

  • Kauss H, Ziegler H (1974) Carbohydrate-binding proteins from the sieve-tube sap of Robinia pseudoacacia L. Planta 121: 197–200

    CAS  Google Scholar 

  • Kemphues KJ, Raff RA, Kaufman TC, Raff EC (1979) Mutation in a structural gene for a β–tubulin specific to testis in Drosophila melanogaster. Proc Natl Acad Sci USA 76: 3991–3995

    PubMed  CAS  Google Scholar 

  • Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 80: 266–276

    PubMed  CAS  Google Scholar 

  • King RW, Zeevart JAD (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53: 96–103

    PubMed  CAS  Google Scholar 

  • Kirschner MW (1978) Microtubule assembly and nucleation. Int Rev Cytol 54: 1–71

    PubMed  CAS  Google Scholar 

  • Kirschner MW (1978) Microtubule assembly and nucleation. Int Rev Cytol 54: 1–71

    Google Scholar 

  • Kleinig H, Dörr I, Weber C, Kollman R (1971b) Filamentous proteins from plant sieve tubes. Nature New Biol 229: 152–153

    PubMed  CAS  Google Scholar 

  • Kleinig H, Thones J, Dorr I, Kollman R (1975) Filament formation in vitro of a sieve tube protein from Cucurbita maxima and Cucurbita pepo. Planta 127: 163–170

    CAS  Google Scholar 

  • Kluge M, Ziegler H (1964) Der ATP-Gehalt der Siebröhrensafte von Laubbäumen. Planta 61: 167–177

    Google Scholar 

  • Kluge M, Becker D, Ziegler H (1970) Untersuchungen über ATP und andere organische Phosphorverbindungen im Siebrohrensaft von Yucca flaccida und Salix triandra. Planta 91: 68–79

    CAS  Google Scholar 

  • Kobayashi T (1975) Dephosphorylation of tubulin-bound guanosine triphosphate during microtubule assembly. J Biochem 77: 1193–1198

    PubMed  CAS  Google Scholar 

  • Kollman R, Dörr I, Kleinig H (1970) Protein filaments — structural components of the phloem exudate. I. Observations with Cucurbita and Nicotiana. Plant 95: 86–94

    Google Scholar 

  • Kretsinger RH (1976) Calcium-binding proteins. Ann Rev Biochem 45: 239–265

    PubMed  CAS  Google Scholar 

  • Kuriyama R (1976) In vitro polymerisation of flagellar and ciliary outer fibre tubulin into microtubules. J Biochem 80: 153–166

    PubMed  CAS  Google Scholar 

  • Kushner DJ (1969) Self assembly of biological strucutes. Bacteriol Rev 33: 302–345

    PubMed  CAS  Google Scholar 

  • Lamoureux CH (1975) Phloem tissue in angiosperms and gymnosperms. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. NATO Adv Study Inst Ser, Pleum Press, New York London, pp 1–20

    Google Scholar 

  • Lee DR (1972) The possible significance of filaments in sieve elements. Nature (London) 235: 266

    Google Scholar 

  • Liener IE (1976) Phytohemagglutinins (Phytolectins). Ann Rev Plant Physiol 27:291–319

    Google Scholar 

  • Lloyd CW, Slabas AR, Powell AJ, MacDonald G, Badley RA (1979) Cytoplasmic microtubules of higher plant cells visualised with antitubulin antibodies. Nature (London) 279: 239–241

    Google Scholar 

  • Lloyd CW, Slabas AR, Powell A J, Lowe SB (1980) Microtubules, protoplasts and plant cell shape. An immunofluorescent study. Planta 147: 500–506

    Google Scholar 

  • Lockwood AH (1978) Tubulin assembly protein: immunochemical and immunofluorescent studies on its function and distribution in microtubules and cultured cells. Cell 13:613–628

    Google Scholar 

  • Lu RC, Elzinga M (1977) Chromatographic resolution of the subunits of calf brain tubulin. Anal Biochem 77: 243–250

    PubMed  CAS  Google Scholar 

  • Lu RC, Elzinga M (1978) The primary structure of tubulin. Sequences of the carboxyl terminus and seven other cyanogen bromide peptides from the α-chain. Biochem Biophys Acta 537: 320–328

    Google Scholar 

  • Luduena RF, Woodward DO (1973) Isolation and partial characterisation of α- and β- tubulin from outer doublets of sea urchin sperm and microtubules of chick embryo brain. Proc Natl Acad Sci USA 70: 3594–3598

    PubMed  CAS  Google Scholar 

  • LLuduena RF, Woodward DO (1975) α- and β-tubulin: separation and partial sequence analysis. Ann NY Acad Sci 253:272–283

    Google Scholar 

  • Luduena RF, Shooter EM, Wilson L (1977) Structure of the tubulin dimer. J Biol Chem 252: 7006–7014

    PubMed  CAS  Google Scholar 

  • McEuen AR (1979) Studies on calcium and a calcium-binding protein in the sieve tube exudate of Cucurbita maxima and related species. Ph. D. Thesis Aberdeen Univ

    Google Scholar 

  • McIntosh JR (1974) Bridges between microtubules. J Cell Biol 61: 166–187

    PubMed  CAS  Google Scholar 

  • McIntosh JR, Hepler PK, Wie DG van (1969) Model for mitosis. Nature (London) 224:659–663

    Google Scholar 

  • Margolis RK, Margolis RU, Shelanski ML (1972) The carbohydrate composition of brain microtubule protein. Biochem Biophys Res Commun 47: 432–437

    PubMed  CAS  Google Scholar 

  • Marotta CA, Harris JL, Gilbert JM (1978) Characterisation of multiple forms of brain tubulin subunits. J Neurochem 30: 1431–1440

    PubMed  CAS  Google Scholar 

  • Marshall LE, Himes RH (1978) Rotenone inhibition of tubulin self assembly. Biochim Biophys Acta 543: 590–594

    PubMed  CAS  Google Scholar 

  • Mellon MG, Rebhun LI (1976) Sulfhydryls and in vitro polymerisation of tubulin. J Cell Biol 70: 226–238

    PubMed  CAS  Google Scholar 

  • Mohri H (1976) The function of tubulin in motile systems. Biochim Biophys Acta 456: 85–127

    PubMed  CAS  Google Scholar 

  • Murphy DB (1975) The mechanism of microtubule-dependent movement of pigment granules in teleost chromatophores. Ann NY Acad Sci 253: 692–701

    PubMed  CAS  Google Scholar 

  • Nath J, Flavin M (1979) Tubulin tyrosylation in vivo and changes accompanying differentiation of cultured neuroblastoma-glioma hybrid cells. J Biol Chem 254: 11505–11510

    PubMed  CAS  Google Scholar 

  • Nicolson GL (1976) Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components. Biochim Biophys Acta 457:57–108

    Google Scholar 

  • Nuske J, Eschrich W (1976) Synthesis of P–protein in mature phloem of Cucurbita maxima. Planta 132: 109–118

    CAS  Google Scholar 

  • Oberhauser R, Kollman R (1977) “Cytochemische Charakterisierung des sogenannten,,Freien Nucleolus als Proteinkorper in den Siebelementen von Passiflora coerulea. Z Pflanzenphysiol 84: 61–75

    Google Scholar 

  • Olmsted JB, Witman GB, Carlson K, Rosenbaum JL (1971) Comparison of the microtubule proteins of neuroblastoma cells, brain and Chlamydomonas flagella. Proc Natl Acad Sci USA 68: 2273–2277

    PubMed  CAS  Google Scholar 

  • Olson LW (1973) A low molecular weight colchicine-binding protein from the aquatic phycomycete Allomyces neo-moniliformis. Arch Mikrobiol 91: 281–286

    CAS  Google Scholar 

  • Palevitz BA, Hepler PK (1975) Is P-protein actin-like? Not yet. Planta 125: 261–271

    Google Scholar 

  • Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72: 399–426

    Google Scholar 

  • Parthasarathy MV (1974) Ultrastructure of phloem in palms. I. Immature sieve elements and parenchymatic elements. Protoplasma 79: 59–91

    Google Scholar 

  • Parthasarathy MV (1975) Sieve element structure. In: Zimmermann MH, Milburn JA (eds) Transport in plants. I. Phloem transport. Encyclopedia of plant physiology, new series Vol. 1. Springer, Berlin Heidelberg New York, pp 3–38

    Google Scholar 

  • Parthasarathy MV, Muhlethaler K (1969) Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 1: 17–36

    Google Scholar 

  • Pauling L (1953) Protein interactions. Aggregation of globular proteins. Disc Faraday Soc 13: 170–176

    Google Scholar 

  • Pickett-Heaps JD (1974) Plant microtubules. In: Robards AW (ed) Dynamic aspects of plant ultrastructure. McGraw-Hill, New York, London, pp 219–225

    Google Scholar 

  • Pipeleers DG, Pipeleers-Marichal MA, Sherline P, Kipnis DM (1977) A sensitive method for measuring polymerised and depolymerised forms of tubulin in tissues. J Cell Biol 74: 341–350

    PubMed  CAS  Google Scholar 

  • Piperno G, Luck D (1974) Isolation of phosphorylated tubulin from Chlamydomonas flagella. J Cell Biol 63: 271a

    Google Scholar 

  • Piperno G, Luck DJ (1976) Phosphorylation of axonemal proteins in Chlamydomonas reinhardtii. J Biol Chem 251: 2161–2167

    PubMed  CAS  Google Scholar 

  • Quinn PJ (1973) The association between phosphatidylinositol phosphodiesterase activity and a specific subunit of microtubular protein in rat brain. Biochem J 133: 273–281

    PubMed  CAS  Google Scholar 

  • Rappaport L, Leterrier JF, Virion A, Nunez J (1976) Phosphorylation of microtubule-associated proteins. Eur J Biochem 62: 539–550

    PubMed  CAS  Google Scholar 

  • Richmond P, Wardlaw IF (1976) On the translocation of sugar: van der Waals forces and surface flow. Aust J Plant Physiol 3: 545–549

    CAS  Google Scholar 

  • Robards AW, Kidwai P (1972) Microtubules and microfibrils in xylem fibres during secondary cell wall formation. Cytobiologie 6: 1–21

    Google Scholar 

  • Rosenbaum JL, Binder LI, Granett S, Dentler WL, Snell W, Sloboda R, Haimo L (1975) Directionality and rate of assembly of chick brain tubulin onto pieces of neurotubules, flagellar axonomes and basal bodies. Ann NY Acad Sci 253: 147–177

    PubMed  CAS  Google Scholar 

  • Rosenfeld AC, Zackroff RV, Weisenberg RC (1976) Magnesium stimulation of calcium binding to tubulin and calcium induced depolymerisation of microtubules. FEBS Lett 65: 144–147

    PubMed  CAS  Google Scholar 

  • Rost TL, Gifford EM (eds) (1977) Mechanisms and control of cell division. Dowden, Hutchinson and Ross, Stroudsburg, PA

    Google Scholar 

  • Rubin RW, Cousins EH (1976) Isolation of a tubulin-like protein from Phaseolus. Phytochemistry 15: 1837–1839

    CAS  Google Scholar 

  • Rubin RW, Cousins EH (1976) Isolation of a tubulin-like protein from Phaseolus. Phytochemistry 15: 1837–1839

    Google Scholar 

  • Sabnis DD, Hart JW (1974) Studies on the possible occurrence of actomyosin-like proteins in phloem. Planta 118: 271–281

    CAS  Google Scholar 

  • Sabnis DD, Hart JW (1976) A comparative analysis of phloem exudate proteins from Cucumis melo, Cucumis sativus and Cucurbita maxima by polyacrylamide gel electrophoresis and isoelectric focusing. Planta 130: 211–218

    CAS  Google Scholar 

  • Sabnis DD, Hart JW (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta 142: 97–101

    CAS  Google Scholar 

  • Sabnis DD, Hart JW (1979) Heterogeneity in phloem protein complements from different species. Consequences to hypothesis concerned with P-protein function. Planta 145: 459–466

    Google Scholar 

  • Sandoval IV, Cuatrecasas P (1976 a) Proteins associated with tubulin. Biochem Biophys Res Commun 68:169–177

    Google Scholar 

  • Sandoval IV, Cuatrecasas P (1976 b) Protein kinase associated with tubulin: affinity chromatography and properties. Biochemistry 15:3424–3432

    Google Scholar 

  • Sandoval IV, Weber K (1978) Calcium induced inactivation of microtubule formation in brain extracts. Presence of a calcium-dependent protease acting on polymerization-stimulating microtubule-associated proteins. Eur J Niochem 92: 463–470

    Google Scholar 

  • Satir P, Ojakian GK (1979) Plant Cilia. In: Haupt W, Feinleib ME (eds) Physiology of Movements. Encyclopedia of plant physiology, new series, vol 7. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sauter JJ (1972) Cytochemical demonstration of sulfhydryl disulfide-containing proteins in sieve elements of conifers. Naturwissenschaften 10: 470

    Google Scholar 

  • Schmitt H, Kram R (1978) Binding of antimitotic drugs around cysteine residues of tubulin. Exp Cell Res 115: 408–411

    PubMed  CAS  Google Scholar 

  • Schmitt H, Littauer YZ (1974) Tubulin. In: Jakoby WB, Wilchek M (eds) Methods in enzymol affinity techniques. Enzyme purification Vol 34 part B Academic Press, New York London, pp 623–627

    Google Scholar 

  • Schnepf E (1974) Microtubules and cell wall formation. Port Acta Biol Ser A 14: 451–461

    Google Scholar 

  • Schnepf E, Stein U, Deichgräber G (1978) Structure, function and development of the peristome of the moss, Rhacopilum tomentosum, with special reference to the problem of microfibril orientation by microtubules. Protoplasma 97: 221–240

    Google Scholar 

  • Sheir-Neiss G, Nardi RV, Gealt MA, Morris NR (1976) Tubulin-like protein from Aspergillus nidulans. Biochem Biophys Res Commun 69: 285–290

    PubMed  CAS  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70: 765–768

    PubMed  CAS  Google Scholar 

  • Sherline P, Schiavone K (1978) High molecular weight MAPs are part of the mitotic spindle. J Cell Biol 77:pp R9–R12

    PubMed  CAS  Google Scholar 

  • Slabas AR, MacDonald G, Lloyd CW (1980) Selective purification of plant proteins which co-polymerise with mammalian microtubules. FEBS Lett 110: 77–79

    PubMed  CAS  Google Scholar 

  • Sleigh MA (ed) (1974) Cilia and flagella. Academic Press, New York London

    Google Scholar 

  • Sloan RT (1977) A biochemical study of P-protein. Ph. D. Thesis, Aberdeen Univ Sloan RT, Sabnis DD, Hart JW (1976) The heterogeneity of phloem exudate proteins from different plants: A comparative survey of ten plants using polyacrylamide gel electrophoresis. Planta 132: 97–102

    Google Scholar 

  • Sloboda RD, Rosenbaum JL (1979) Decoration and stabilization of intact, smooth-walled microtubules with microtubule-associated proteins. Biochemistry 18: 48–55

    PubMed  CAS  Google Scholar 

  • Sloboda RD, Rudolph SA, Rosenbaum JL (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci USA 72:177–181

    Google Scholar 

  • Sloboda RD, Dentler WL, Bloodgood RA, Teizer BR, Granett S, Rosenbaum JL (1976a) Microtubule-associated proteins (MAPS) and the assembly of microtubules in vitro. In: Goldman R, Pollard T, Rosenbaum J (eds) Cell motility. Cold Spring Harbor Lab, pp 1171–1212

    Google Scholar 

  • Sloboda RD, Dentler WL, Rosenbaum JL (1976b) Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry 15: 4497–1505

    PubMed  CAS  Google Scholar 

  • Sloboda RD, Dentler WL, Rosenbaum JL (1976b) Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry 15: 4497–1505

    Google Scholar 

  • Soifer D (ed) (1975) The biology of cytoplasmic microtubules. Ann NY Acad Sci 253:pp 1–848

    PubMed  CAS  Google Scholar 

  • Snyder JA, Mcintosh JR (1976) Biochemistry and physiology of microtubules. Ann Rev Biochem 45: 699–720

    Google Scholar 

  • Soifer D, Laszlo AH, Scotto JM (1972) Enzymatic activity in tubulin preparations I. Intrinsic protein kinase activity in lyophilized preparations of tubulin from porcine brain. Biochim Biophys Acta 271: 182–192

    Google Scholar 

  • Spanner DC (1978) Sieve plate pores, open or occluded? A critical review. Plant Cell Environ 1: 7–20

    Google Scholar 

  • Stearns MV, Brown DL (1979) Purification of a microtubule-associated protein based on its preferential association with tubulin during microtubule initiation. FEBS Lett 101: 15–20

    PubMed  CAS  Google Scholar 

  • Steer MW, Newcomb EH (1969) Development and dispersal of P-protein in the phloem of Coleus blumei Benth. J Cell Sci 4: 155–169

    PubMed  CAS  Google Scholar 

  • Stephens RE (1974) Enzymatic and structural proteins of the axoneme. In: Sleigh MA (ed) Cilia and Flagella. Academic Press, New York London, pp 39–78

    Google Scholar 

  • Stephens RE (1977) Major membrane protein differences in cilia and flagella: evidence for a membrane associated tubulin. Biochemistry 16: 2047–2058

    PubMed  CAS  Google Scholar 

  • Stephens RE (1978) Primary structural differences among tubulin subunits from flagella, cilia and cytoplasm. Biochemistry 17: 2882–2991

    PubMed  CAS  Google Scholar 

  • Stephens RE, Edds KT (1976) Microtubules: structure, chemistry and function. Physiol Rev 56: 709–777

    PubMed  CAS  Google Scholar 

  • Stone DL, Cronshaw J (1973) Fine structure of P-protein filaments from Ricinus communis. Planta 113: 193–206

    Google Scholar 

  • Telzer BR, Rosenbaum JL (1979) Cell cycle dependent in vitro assembly of microtubules onto the pericentriolar material of HeLa cells. J Cell Biol 81: 484–489

    PubMed  CAS  Google Scholar 

  • Thompson WC, Deanin GG, Gordon MW (1979) Intact microtubules are required for rapid turnover of carboxyl-termminal tyrosine of alpha-tubulin in cell cultures. Proc Natl Acad Sci USA 76: 1318–1322

    PubMed  CAS  Google Scholar 

  • Walker TS (1972) The purification and some properties of a protein causing gelling in phloem sieve tube exudate from Cucurbita pepo. Biochim Biophys Acta 257: 433–444

    PubMed  CAS  Google Scholar 

  • Warner FD (1976) Ciliary intermicrotubule bridges. J Cell Sci 20: 101–114

    PubMed  CAS  Google Scholar 

  • Watanabe T, Flavin M (1973) Two types of adenosine triphosphatase from flagella of Chlamydomonas reinhardii. Biochem Biophys Res Commun 52: 195–201

    PubMed  CAS  Google Scholar 

  • Watanabe T, Flavin M (1973) Two types of adenosine triphosphatase from flagella of Chlamydomonas reinhardii. Biochem Biophys Res Commun 52: 195–201

    Google Scholar 

  • Weber C, Kleinig H (1971) Molecular weights of Cucurbita sieve tube proteins. Planta 99: 179–182

    CAS  Google Scholar 

  • Weber C, Frank WW, Kartenbeck J (1974) Structure and biochemistry of phloem proteins isolated from Cucurbita maxima. Exp Cell Res 87: 79–106

    PubMed  CAS  Google Scholar 

  • Wehland J, Herzog W, Weber K (1977) Interaction of griseofulvin with microtubules, microtubule protein and tubulin. J Molec Biol 111: 329–342

    PubMed  CAS  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo S, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72: 1858–1862

    PubMed  CAS  Google Scholar 

  • Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177: 1104–1105

    PubMed  CAS  Google Scholar 

  • Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71: 365–388

    Google Scholar 

  • Wiche G, Honig LS, Cole RD (1979) Microtubule protein preparations from C6 glial cells and their spontaneous polymer formation. J Cell Biol 80: 553–563

    PubMed  CAS  Google Scholar 

  • Williamson RE (1972) An investigation of the contractile protein hypothesis of phloem translocation. Planta 106: 149–157

    CAS  Google Scholar 

  • Wilson L, Bryan J, Ruby A, Mazia D (1970) Precipitation of proteins by vinblastine and calcium ions. Proc Natl Acad Sci USA 66: 807–814

    PubMed  CAS  Google Scholar 

  • Wilson L, Bamburg JR, Mizel SB, Gisham LM, Creswell KM (1974) Interaction of drugs with microtubule proteins. Fed Proc 33: 158–166

    PubMed  CAS  Google Scholar 

  • Witman GB, Carlson K, Berliner J, Rosenbaum JL (1972) Chlamydomonas flagella I Isolation and electrophoretic analysis of microtubules matrix, membranes, mastigonemes. J Cell Biol 54:507–539

    Google Scholar 

  • Vallee RB, Borisy GG (1978) The non-tubulin component of microtubule protein oligomers. Effect on self-association and hydrodynamic properties. J Biol Chem 253: 2834–2845

    Google Scholar 

  • Ventilla M, Cantor CR, Shelanski M (1972) A circular dichroism study of microtubule protein. Biochemistry 11: 1554–1561

    PubMed  CAS  Google Scholar 

  • Yapa PAJ, Spanner DC (1974) Localization of adenosine triphosphatase activity in maturesieve elements of Tetragonia. Planta 117: 321–328

    CAS  Google Scholar 

  • Zee S-Y (1969) Fine structure of differentiating sieve elements of Vicia faba. Aust J Bot 17: 441–456

    Google Scholar 

  • Zeeberg B, Caplow M (1978) Reactions of tubulin-associated guanine nucleotides. J Biol Chem 253: 1984–1990

    PubMed  CAS  Google Scholar 

  • Ziegler H (1975) Nature of transported substances. In: Zimmermann MH, Milburn JA (eds) Transport in plants I. Phloem transport. Encyclopedia of plant physiology, new series Vol 1. Springer, Berlin Heidelberg New York, pp 59–100

    Google Scholar 

  • Ziegler H, Kluge M (1962) Die Nucleinsäuren und ihre Bausteine im Siebröhrensaft on Robinia pseudoacacia. Planta 58: 144–153

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sabnis, D.D., Hart, J.W. (1982). Microtubule Proteins and P-Proteins. In: Boulter, D., Parthier, B. (eds) Nucleic Acids and Proteins in Plants I. Encyclopedia of Plant Physiology, vol 14 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68237-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68237-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68239-1

  • Online ISBN: 978-3-642-68237-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics