Skip to main content

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

Light, perceived and transduced by a number of photoreceptors, is known to regulate or modify many aspects of plant growth and development. Beginning with seed germination and ending with fruiting and senescence, light can regulate processes which can also be modified by plant hormones. This has been taken as circumstantial evidence that light may be exerting its influence via plant hormones, and considerable research effort has been directed toward elucidating the role of plant hormones in light-mediated processes. The two areas of light and plant hormone research that have received the most attention are de-etiolation and photoperiodism (see Vince-Prue, Chap. 9 this Vol.). While the emphasis, by necessity, of this chapter is on plant hormones in de-etiolation, we include relevant work on other aspects of photomorphogenesis and plant hormones.

In this chapter the term “hormone” is used as a convenient operational expression, equivalent to “plant-growth regulator”, but without implying any assumptions as to function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton G J, Murray P B (1974) The roles of auxin and gibberellin in reversing radiation inhibition of hypocotyl lengthening. Planta 117: 219–226

    Article  CAS  Google Scholar 

  • Anstis P J P, Friend J, Gardner D C J (1975) The role of xanthoxin in the inhibition of pea seedling growth by red light. Phytochemistry 14: 31–35

    Article  CAS  Google Scholar 

  • Bandurski R S, Schulze A, Cohen J D (1977) Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun 79: 1219–1223

    Article  PubMed  CAS  Google Scholar 

  • Barnes M F (1972) Abscisic acid in pea shoots. Planta 104: 182–184

    Article  CAS  Google Scholar 

  • Bassi P K, Spencer M S (1982) Effect of carbon dioxide and light on ethylene production in intact sunflower plants. Plant Physiol 69: 1222–1225

    Article  PubMed  CAS  Google Scholar 

  • Beevers L, Loveys B, Pearson J A, Wareing P F (1970) Phytochrome and hormonal control of expansion and greening of etiolated wheat leaves. Planta 90: 286–294

    Article  CAS  Google Scholar 

  • Blaauw-Jansen G (1959) The influence of red and far-red light on growth and phototropism of the Avena seedling. Thesis, Univ Utrecht, Netherlands

    Google Scholar 

  • Bottomley W, Smith H, Galston A W (1966) Flavonoid complexes in Pisumsativum. III. The effect of light on the synthesis of kaempferol and quercetin complexes. Phytochemistry 5: 117–123

    Google Scholar 

  • Bown A W, Reeve D R, Crozier A (1975) The effect of light on the gibberellin metabolism and growth of Phaseolus coccineus seedlings. Planta 126: 83–91

    Article  CAS  Google Scholar 

  • Briggs W R (1963) Red light, auxin relationships and the photo tropic responses of corn and oat coleoptiles. Am J Bot 50: 196–207

    Article  CAS  Google Scholar 

  • Buhler B, Drumm H, Mohr H (1978) Investigations on the role of ethylene in phyto-chrome-mediated photomorphogenesis. I. Anthocyanin synthesis. Planta 142: 109–117

    Google Scholar 

  • Burden R S, Firn R D, Hiron R W P, Taylor H F, Wright S T C (1971) Induction of plant-growth inhibitor xanthoxin in seedlings by red light. Nature 234: 94–96

    Google Scholar 

  • Burg SP (1973) Ethylene in plant growth. Proc Natl Acad Sci USA 70: 591–597

    Article  PubMed  CAS  Google Scholar 

  • Burg SP, Burg EA (1967) Auxin-stimulated ethylene formation; its relationship to auxin- inhibited growth, root geotropism and other plant processes. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1275–1294

    Google Scholar 

  • Burg SP, Burg EA (1968) Ethylene formation in pea seedlings: its relation to the inhibition of bud growth caused by indole-3-acetic acid. Plant Physiol 43: 1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Cooke RJ, Kendrick RE (1976) Phytochrome-controlled gibberellin metabolism in etioplast envelopes. Planta 131: 303 - 307

    Article  CAS  Google Scholar 

  • Cooke R J, Saunders P F (1975 a) Phytochrome-mediated changes in extractable gibberellin activity in a cell-free system from etiolated wheat leaves. Planta 123:299-–02

    Google Scholar 

  • Cooke R J, Saunders P F (1975 b) Photocontrol of gibberellin levels as related to the unrolling of etiolated wheat leaves. Planta 126: 151–160

    Google Scholar 

  • Craker L E., Abeles F B, Shropshire W (1973) Light-induced ethylene production in sorghum. Plant Physiol 51: 1082–1083

    Article  PubMed  CAS  Google Scholar 

  • Crozier A, Audus LJ (1968) Distribution of gibberellin-like substances in light and dark grown seedlings of Phaseolus multiflorus. Planta 83: 207–217

    Article  CAS  Google Scholar 

  • De Greef J A, Frederick H (1983) Photomorphogenesis and hormones. In: Shropshire W, Mohr H (eds) Photomorphogenesis. Encyclopedia of plant physiology, New Ser vol 16. Springer, Berlin Heidelberg New York, pp 401–27

    Google Scholar 

  • DeLaat A M M, Brandenburg D C C, Van Loon L C (1981) The modulation of the conversion of 1-aminocyclopropane-l-carboxylic acid to ethylene by light. Planta 153: 193–200

    Article  Google Scholar 

  • Dorffling K (1973) Regulation of internode growth in pea seedlings by light and abscisic acid. Z Pflanzenphysiol 70: 131–137

    Google Scholar 

  • Erez A (1977) The effect of different portion of the sunlight spectrum on ethylene evolution in peach (Prunus persica) apices. Physiol Plant 39:285289

    Google Scholar 

  • Evans A (1975) Light and plant development: Proc 22nd Univ Nott. Easter School in Agric Sci 1975. Butterworths, London, pp 129–141

    Google Scholar 

  • Evans A, Smith H (1976 a) Localisation of phytochrome in etioplasts and its regulation in vitro of gibberellin levels. Proc Natl Acad Sci USA 73: 138–142

    Google Scholar 

  • Evans A, Smith H (1976 b) Spectrophotometric evidence for the presence of phytochrome in the envelope membranes of barley etioplasts. Nature 259: 323–325

    Google Scholar 

  • Fletcher R A, Zalik S (1964) Effect of light quality on growth and free IAA content in Phaseolus vulgaris. Plant Physiol 39: 328–331

    Article  PubMed  CAS  Google Scholar 

  • Fletcher R A, Zalik S (1965) Effects of light of several spectral bands on the metabolism of radioactive IAA in bean seedlings. Plant Physiol 40: 549–552

    Article  PubMed  CAS  Google Scholar 

  • Furuya M (1962) Thesis, Yale University

    Google Scholar 

  • Furuya M, Torrey J G (1964) The reversible inhibition by red and far-red light of auxin-induced lateral root initiation on isolated pea roots. Plant Physiol 39: 987–991

    Article  PubMed  CAS  Google Scholar 

  • Galston A W (1970) The relation of flavonoids and peroxidase activity to the control of growth by phytochrome and homones. Am J Bot (Abstr) 57: 764

    Google Scholar 

  • Galston A W, Hillman WS (1957) Inductive control of indoleacetic acid oxidase activity by red and near infrared light. Plant Physiol 32: 129–135

    Article  PubMed  Google Scholar 

  • Galston A W, Hillman W S (1961) Encyclopedia of plant physiology, vol 14. Nucleic acids in proteins and plants. Parthier B, Boulter D (eds) Springer, Berlin Heidelberg New York, pp 647–670

    Google Scholar 

  • Galston A W, Tuttle A A, Penny P J (1964) A kinetic study of growth movements and photomorphogenesis in etiolated pea seedlings. Am J Bot 51: 853–858

    Article  Google Scholar 

  • Gepstein S, Thimann K V (1980) The effect of light on the production of ethylene from 1-aminocyclopropane-l-carboxylic acid by leaves. Planta 149: 196–199

    Article  CAS  Google Scholar 

  • Goeschl J D, Pratt H K, Bonner B A (1967) An effect of light on the production of ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42: 1077–1080

    Article  PubMed  CAS  Google Scholar 

  • Grodzinski B, Boesel I, Horton R F (1982) Ethylene release from leaves of Xanthium strumarium L. and Zea mays L. J Exp Bot 33: 344–354

    Article  CAS  Google Scholar 

  • Grodzinski B, Boesel I, Horton RF (1983) Light stimulation of ethylene release from leave of Gomphrena globosa L. Plant Physiol 71: 588–593

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Hase T (1978) Light growth inhibition and growth inhibitors in Sakurajima radish seedlings. Plant Cell Physiol 19: 1077–1083

    CAS  Google Scholar 

  • Hasegawa K, Hase T (1981) Raphanusol B: A growth inhibitor of light-grown radish seedlings. Plant Cell Physiol 22:303–306 \

    Google Scholar 

  • Hasegawa K, Miyamoto K (1980) Raphanusol A: a new growth inhibitor of light-grown radish seedlings. Plant Cell Physiol 21: 363–366

    CAS  Google Scholar 

  • Hasegawa K, Shihara S, Iwagawa T, Hase T (1982) Isolation and identification of a new growth inhibitor, raphanusanin from radish seedlings and its role in light inhibition of hypocotyl growth. Plant Physiol 70: 626–628

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Koreeda M, Hase T (1983) A new growth inhibitor, pisumin, involved in light inhibition of epicotyl growth of dwarf peas. Plant Physiol 72: 391–393

    Article  PubMed  CAS  Google Scholar 

  • Henshall J D, Goodwin T W (1964) The effect of red and far-red light on carotenoid and chlorophyll formation in pea seedlings. Photochem Photobiol 3: 243–247

    Article  CAS  Google Scholar 

  • Hewett E W, Wareing P F (1973) Cytokinins in Populus x robusta (Schneid): light effects

    Google Scholar 

  • on engogenous levels. Planta 114:119–129

    Google Scholar 

  • Higgins T J V, Bonner B A (1974) Natural inhibitors in normal and dwarf peas. J Exp Bot 25: 705–714

    Article  CAS  Google Scholar 

  • Hillman W S (1949) Photoperiodism and related phenomena in plants and animals. Am Assoc Adv Sci Washington D C, pp 181–196

    Google Scholar 

  • Hilton J R (1983) The influence of phytochrome photoequilibria on gibberellin-like substances and chlorophyll content of chloroplasts of Hordeum vulgare L. New Phytol 95: 545–548

    Article  CAS  Google Scholar 

  • Hilton J R (1984) Further analysis of the in vitro phytochrome mediation of the amount of gibberellin-like substances in etioplast-enriched suspensions isolated from Hordeum vulgare L. leaves. New Phytol 96: 161–166

    Article  CAS  Google Scholar 

  • Hilton J R and Smith H (1980) The presence of phytochrome in purified barley etioplasts and its in vitro regulation of biologically-active gibberellin levels in etioplasts. Planta 148: 312–318

    Article  CAS  Google Scholar 

  • Janes H W, Loercher L, Frenkel C (1976) Effects of red light and ethylene on growth of etiolated lettuce seedlings. Plant Physiol 57: 420–423

    Article  PubMed  CAS  Google Scholar 

  • Jones J F, Kende H (1979) Auxin-induced ethylene biosynthesis in subapical stem sections of etiolated seedlings of Pisum sativum L. Planta 146: 649–656

    Article  CAS  Google Scholar 

  • Jones R L (1967) Agar diffusion techniques for estimating gibberellin production by plant organs; the discrepancy between extractable and diffusible gibberellins in pea. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth sub-stances. Runge, Ottawa, pp 73–84

    Google Scholar 

  • Kang B G (1971) Phytochrome-controlled leaf unrolling and protein synthesis. Plant Physiol 47: 352 - 356

    Article  PubMed  CAS  Google Scholar 

  • Kang B G, Burg S P (1972 a) Involvement of ethylene in phytochrome-mediated carotenoid synthesis. Plant Physiol 49: 631–633

    Google Scholar 

  • Kang B G, Burg S P (1972 b) Relation of phytochrome-enhanced geotropic sensitivity to ethylene production. Plant Physiol 50: 132–135

    Google Scholar 

  • Kang B G, Burg S P (1973) Role of ethylene in phytochrome-induced anthocyanin synthesis. Planta 110: 227–235

    Article  CAS  Google Scholar 

  • Kang B G, Ray P M (1969 a) Ethylene and carbon dioxide as mediators in the response of the bean hypocotyl hook to light and auxins. Planta 87: 206–216

    Google Scholar 

  • Kang B G, Ray P M (1969 b) Role of growth regulators in the bean hypocotyl hook-opening response. Planta 87: 193–205

    Google Scholar 

  • Kang B G, Newcomb W, Burg S P (1971) Mechanism of auxin-induced ethylene production. Plant Physiol 47: 504–509

    Article  PubMed  CAS  Google Scholar 

  • Kao C H, Yang S F (1982) Light inhibition of the conversion of 1-aminocyclopropane-l- carboxylic acid to ethylene in leaves is mediated through carbon dioxide. Planta 155: 261–266

    Article  CAS  Google Scholar 

  • Kays S E, Kende H (1971) The level of (+)-abscisic acid in dwarf pea shoots. Naturwissenschaften 58: 524 — 525

    Google Scholar 

  • Kende H, Lang A (1964) Gibberellins and light inhibition of stem growth in peas. Plant Physiol 39: 435–440

    Article  PubMed  CAS  Google Scholar 

  • Klein W H, Withrow R B, Elstad V B (1956) Response of the hypocotyl hook of bean seedlings to radiant energy and other factors. Plant Physiol 31: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Köhler D (1965) Über den Gibberellingehalt von Zwerg- und Normalerbsen in Rotlicht und die Wirkung von Chlorocholinchlorid auf das Wachstum der Erbsen. Planta 65: 218 - 224

    Article  Google Scholar 

  • Köhler D (1966) Die Abhängigkeit der Gibberellinproduktion von Normalerbsen vom Phytochromsystem. Planta 69: 27–33

    Article  Google Scholar 

  • Köhler D, Lang A (1963) Evidence for substances in higher plants interfering with the response of dwarf peas to gibberellin. Plant Physiol 38: 555–560

    Article  PubMed  Google Scholar 

  • Köhler K H, Dörfler M, Göring H (1980) The influence of light on the cytokinin content of Amaranthus seedlings. Biol Plant 22: 128–134

    Article  Google Scholar 

  • Kondo K, Watanabe A, Imaseki H (1975) Relationships in actions of indoleacetic acid, benzyladenine and abscisic acid in ethylene production. Plant Cell Physiol 16: 1001–1007

    CAS  Google Scholar 

  • Liverman J, Bonner J (1953) The interaction of auxin and light in the growth responses of plants. Proc Natl Acad Sci USA 39: 905–916

    Article  PubMed  CAS  Google Scholar 

  • Longo C P, Longo G P, Lampugnani M, Rossi G, Servettaz O (1981) Light and fusicoccin as tools for discrimination among responses of cotyledons to cytokinins. In: Guérin J, Péaud-Lenoel C (eds) Metabolism and molecular activities of cytokinins.Springer, Berlin, pp 261–266

    Google Scholar 

  • Loveys B R (1979) The influence of light quality on levels of abcisic acid in tomato plants and evidence for a novel abscisic acid metabolite. Physiol Plant 46: 79–84

    Article  CAS  Google Scholar 

  • Loveys B R, Wareing P F (1971a) The red-light-controlled production of gibberellin in etiolated wheat leaves. Planta 98: 109–116

    Article  CAS  Google Scholar 

  • Loveys B R, Wareing P F (1971b) The hormonal control of wheat leaf unrolling. Planta 98: 117–127

    Article  CAS  Google Scholar 

  • Lyon C J (1970) Ethylene inhibition of auxin transport by gravity in leaves. Plant Physiol 45: 644–646

    Article  PubMed  CAS  Google Scholar 

  • Mor Y, Spiegelstein H, Halevy A H (1983) Inhibition of ethylene biosynthesis in carnation petals by cytokinin. Plant Physiol 71: 541–546

    Article  PubMed  CAS  Google Scholar 

  • Muir R M (1970) The control of growth by the synthesis of IAA and its conjugation. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 96–101

    Google Scholar 

  • Muir R M (1974) Effect of red light on coleoptile growth. Plant Physiol 54: 286–288

    Article  PubMed  CAS  Google Scholar 

  • Muir R M, Zhu L (1983) Effect of light in the control of growth by auxin and its inhibitors) in the sunflower. Physiol Plant 57: 407–410

    Article  CAS  Google Scholar 

  • Mumford F E, Smith D H, Heytler P G (1964) The effect of red light on the flavonoid composition of etiolated pea plumules. Biochem J 91: 517–522

    PubMed  CAS  Google Scholar 

  • Musgrave A, Kays S E, Kende H (1969) In vivo binding of radioactive gibberellins in dwarf pea shoots. Planta 89: 165–177

    Article  CAS  Google Scholar 

  • Neskovic M, Konjevic R (1974) The non-reversible effects of red and far-red light on the content of gibberellin-like substances in pea internodes. J Exp Bot 25: 733–739

    Article  CAS  Google Scholar 

  • Potts W C, Reid J B, Murfet I C (1982) Internode length in Pisum. I. The effect of the Le/le gene difference on endogenous gibberellin-like substances. Physiol Plant 55: 323–328

    Google Scholar 

  • Powell R D, Griffith M M (1960) Some anatomical effects of kinetin and red light on discs of bean leaves. Plant Physiol 35: 273–275

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal R, Bulard C (1975) Auxin balance in the Avena coleoptile: effect of light-quality. Physiol Veg 13: 1 - 11

    CAS  Google Scholar 

  • Reed W A (1971) Investigations on the rapid phytochrome-induced inhibition of Tropaeolum stem elongation. Plant Physiol 47: Abstr 10

    Google Scholar 

  • Reid D M (1983) Gibberellins and phytochrome. In: Crozier A (ed) The biochemistry and physiology of gibberellins. vol 2. Praeger, New York, p 452

    Google Scholar 

  • Reid D M, Clements J B (1968) RNA and protein synthesis: pre-requisites of red light-

    Google Scholar 

  • induced gibberellin synthesis. Nature 219:607–609

    Google Scholar 

  • Reid D M, Clements J B, Carr D J (1968) Red light induction of gibberellin synthesis in leaves. Nature 217: 580–582

    Article  CAS  Google Scholar 

  • Reid D M, Tuing M S, Durley R C, Railton I D (1972) Red light-induced conversion of 3H-GA9 into other gibberellin-like substances in homogenates of etiolated barley leaves. Planta 108: 67–75

    Article  CAS  Google Scholar 

  • Reid J B (1983) Internode length in Pisum. Do the internode length genes affect growth in dark-grown plants? Plant Physiol 72: 759–763

    Article  PubMed  CAS  Google Scholar 

  • Russell D W, Galston A W (1969) Blockage of gibberellic acid of phytochrome effects on growth, auxin responses, and flavonoid synthesis in etiolated pea internodes. Plant Physiol 44: 1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Sakai S, Imaseki H (1971) Auxin-induced ethylene production by mungbean hypocotyl segments. Plant and Cell Physiol 12: 349–359

    CAS  Google Scholar 

  • Samimy C (1978) Effect of light on ethylene production and hypocotyl growth of soybean seedlings. Plant Physiol 61: 772–774

    Article  PubMed  CAS  Google Scholar 

  • Scott R A, Liverman J L (1957) Control of etiolated bean leaf-disc expansion by gibberellins and adenine. Science 126: 122–124

    Article  PubMed  CAS  Google Scholar 

  • Sherwin J E, Furuya M (1973) A red-far red reversible effect on uptake of exogenous indole-acetic acid in etiolated rice coleoptiles. Plant Physiol 51: 295 - 298

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1975) Phytochrome and photomorphogenesis. McGraw-Hill, London, pp 33- 158

    Google Scholar 

  • Smith H (1980) Gibberellins in photomorphogenesis. In: Brit Plant Growth Regulator Group Monograph #5, Gibberellins

    Google Scholar 

  • Smith H (1982) Light quality, photoperception and plant strategy. Annu Rev Plant Physiol 33: 481–518

    Article  CAS  Google Scholar 

  • Smith H, Morgan D C (1983) The function of phytochrome in nature. In: Shropshire W, Mohr H (eds) Encyclopedia of plant physiology (NS), vol 16. Springer, Berlin, pp 491–517

    Google Scholar 

  • Sundquist C, Briggs W R (1982) The effect of delta-ALA on red-light-induced unrolling of dark-grown barley leaf sections. Physiol Plant 54: 131–136

    Article  Google Scholar 

  • Tanada T (1968) A rapid photoreversible response of barley root tips in the presence of IAA. Proc Natl Acad Sci USA 59: 376–380

    Article  PubMed  CAS  Google Scholar 

  • Taylor J S, Wareing P F (1979) The effect of light on the endogenous levels of cytokinins and gibberellins in seeds of Sitka spruce (Picea sitchensis Carriere). Plant Cell Environ 2: 173–179

    Article  Google Scholar 

  • Tillberg E (1974 a) Levels of indole 3yl-acetic acid and acid inhibitors in green and etiolated bean seedlings (Phaseolus vulgaris). Physiol Plant 31:106–111

    Google Scholar 

  • Tillberg E (1974 b) Occurrence of endogenous indole 3yl-aspartic acid in light and dark-grown bean seedlings (Phaseolus vulgaris). Physiol Plant 31:271–274

    Google Scholar 

  • Tucker D J (1976) Effects of far-red light on the hormonal control of side shoot growth

    Google Scholar 

  • in the tomato. Ann Bot 40:1033–1042

    Google Scholar 

  • van Staden J (1973) Changes in endogenous cytokinins of lettuce seed during germination. Physiol Plant 23: 222–227

    Article  Google Scholar 

  • van Staden J, Wareing P F (1972) The effect of light on endogenous cytokinin levels

    Google Scholar 

  • in seeds of Rumex obtusifolius. Planta 104:126–133

    Google Scholar 

  • Veroustraete F, Fredericq H, Van Wiemeersch L, De Greef J (1982) Specific photoregulation by phytochrome of epinasty and light-induced ethylene production in Marchantia polymorpha. Photochem Photobiol 35: 261–264

    Article  CAS  Google Scholar 

  • Vince D (1968) Growth and anthocyanin synthesis in excised Sorghum internodes. I. Effects of growth-regulating substances. Planta 82: 261–279

    Article  CAS  Google Scholar 

  • Virgin H I (1961) Action spectrum for the elimination of the lag phase in chlorophyll formation in previously dark-grown leaves of wheat. Physiol Plant 14: 439–452

    Article  CAS  Google Scholar 

  • Walton J D, Ray P M (1981) Evidence for receptor function of auxin-binding sites in maize. Red light inhibition of mesocotyl elongation and auxin binding. Plant Physiol 68: 1334–1338

    Google Scholar 

  • Yoshii H, Imaseki H (1981) Biosynthesis of auxin-induced ethylene. Effects of indole-3-acetic acid, benzyladenine and abscisic acid on the endogenous levels of 1-aminocyclo-propane-1-carboxylic acid ( ACC) and ACC synthetase. Plant Cell Physiol 22: 369–379

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

O’Brien, T., Beall, F.D., Smith, H. (1985). De-Etiolation and Plant Hormones. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics