Skip to main content

Distribution and Connections of Afferent Fibres in the Spinal Cord

  • Chapter
Somatosensory System

Part of the book series: Handbook of Sensory Physiology ((SENSORY,volume 2))

Abstract

Upon entering the spinal cord through the dorsolateral sulcus the dorsal root fibers penetrate into various depths along the dorsomedial border of the dorsal grey column. The narrow strip occupied in the dorsal funiculus (dorsal white column) by the primary sensory fibers at or near the level of their entrance (the so-called root entrance zone) closely follows the medial borderline of the dorsal horn, its length and orientation thus varies in different regions of the cord. The concepts of a lateral division of the rootlets entering Lissauer’s tract and containing mainly small calibered fibers (Ranson, 1913) has been questioned recently (Earle, 1952; Wall, 1962) but with certain modifications appears to be still acceptable (Szentágothai, 1964a) (see paragraph 1.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, S.A.: Projection of different spinal pathways to the second somato sensory area in cat. Acta physiol. scand. 56, Suppl. 194 (1962).

    Google Scholar 

  • Bodian, D.: Introductory survey of neurons. Cold Spr. Harb. Symp. quant. Biol. 17, 1–13 (1952).

    CAS  Google Scholar 

  • Bodian, D.: Synaptic types on spinal motoneurons: an electron microscopic study. Bull. Johns Hopk. Hosp. 119, 16–45 (1966).

    Google Scholar 

  • Bodian, D.: An electron microscopic characterization of classes of synaptic vesicles by means of controlled aldehyde fixation. J. Cell Biol. 44, 115–124 (1970).

    PubMed  CAS  Google Scholar 

  • Boehme, C.C.: The neuronal structure of Clarke’s nucleus of the spinal cord. J. comp. Neurol. 132, 445–462 (1968).

    PubMed  CAS  Google Scholar 

  • Bok, Th.: Das Rückenmark. In: Handbuch der mikroskopischen Anatomie des Menschen, Bd. 4, Teil 1, Nervensystem, pp. 478–578. Ed. by W. Möllendorff. Berlin: Springer 1928.

    Google Scholar 

  • Burke, R.E., Lundberg, A., Weight. F.: Spinal border cell, origin of the ventral spinocerebellar tract. Exp. Brain Res. 12, 283–294 (1971).

    PubMed  CAS  Google Scholar 

  • Chambers, W.W., Liu, C.N.: Corticospinal tract of the cat. An attempt to correlate the pattern of degeneration with deficits in reflex activity following neocortical lesions. J. comp. Neurol. 108, 23–55 (1957).

    PubMed  CAS  Google Scholar 

  • Christensen, B.N., Perl, E.R.: Spinal neurons specifically excited by noxious or thermal stimuli: the marginal zone of the dorsal horn. J. Neurophysiol. 33, 293–307 (1970).

    PubMed  CAS  Google Scholar 

  • Conradi, S.: Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat. Acta physiol. scand. Suppl. 332, 5–48 (1969).

    PubMed  CAS  Google Scholar 

  • Cooper, S., Sherrington, C.S.: Gower’s tract and spinal border cells. Brain 63, 123–134 (1940).

    Google Scholar 

  • Curtis, D.R., Eccles, J.C., Lundberg, A.: Intracellular recording from cells in Clarke’s column. Acta physiol. scand. 43, 303–314 (1958).

    PubMed  CAS  Google Scholar 

  • Dyachkova, L.N., Kostyuk, P.G., Pogorelaya, N.Ch.: An electron microscopic analysis of pyramidal tract terminations in the spinal cord of the cat. Exp. Brain Res. 12, 105–119(1971).

    PubMed  CAS  Google Scholar 

  • Earle, K.M.: The tract of Lissauer and its possible relation to the pain pathway. J. comp. Neurol. 98, 93–111 (1952).

    Google Scholar 

  • Ecoles, J.C.: Postsynaptic inhibition in the central nervous system. In: Structure and Function of Inhibitory Neuronal Mechanisms, pp. 291–308. Ed. by C. von Eitler, S. Skoglund and U. Söderberg. Oxford and New York: Pergamon Press 1966/1968.

    Google Scholar 

  • Eccles, J. C., Ecoles, R.M., Lundberg, A.: Types of neurones in and around the intermediate nucleus of the lumbosacral cord. J. Physiol. (Lond.) 154, 89–114 (1960).

    CAS  Google Scholar 

  • Ecoles, J.C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motor axon collaterals to motor neurons. J. Physiol. (Lond.) 126, 524–565 (1954a).

    Google Scholar 

  • Ecoles, J.C., Fatt, P., Landgren, S.: The “direct” inhibitory pathway in the spinal cord. Aust. J. Sci. 16, 130–134 (1954b).

    Google Scholar 

  • Eccles, J.C., Fatt, P., Landgren, S., Winsbury, G.J.: Spinal cord potentials generated by volleys in the large muscle afferent fibers. J. Physiol. (Lond.) 125, 590–606 (1954 c).

    CAS  Google Scholar 

  • Ecoles, J.C., Fatt, P., Landgren, S.: The central pathway for the direct inhibitory action of impulses in the largest afferent nerve fibres to muscles. J. Neurophysiol. 19, 75–98 (1956).

    Google Scholar 

  • Ecoles, J.C., Hubbard, J.I., Oscarsson, O.: Intracellular recording from cells of the ventral spino-cerebellar tract. J. Physiol. (Lond.) 158, 486–516 (1961a).

    Google Scholar 

  • Eccles, J.C., Oscarsson, O., Willis, W.D.: Synaptic action of group I and II afferent fibers of muscle on the cells of the dorsal spinocerebellar tract. J. Physiol. (Lond.) 158, 517–543 (1961b).

    CAS  Google Scholar 

  • Fink, R. P., Heimer, L.: Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4, 369–374 (1967).

    PubMed  CAS  Google Scholar 

  • Flechsig, P.: Die Leitungsbahnen in Gehirn und Rückenmark des Menschen. Leipzig, 1876.

    Google Scholar 

  • Flechsig, P.: Ist die Tabes Dorsalis eine “Systemerkrankung”? Neurol. Zentralbl. 9, 72–81 (1890).

    Google Scholar 

  • Foerster, O.: Symptomatologie der Erkrankung des Rückenmarks und seiner Wurzeln. In: Handbuch der Neurologie, vol. 5, pp. 349–358. Ed. by O. Bumke and O. Foerster. Berlin: Springer 1936.

    Google Scholar 

  • Gray, E.G.: Round and flat synaptic vesicles in the fish central nervous system. In: Cellular Dynapmics of the Neuron, pp. 211–227. Ed. by S.H. Barondes. New York and London: Academic Press 1969.

    Google Scholar 

  • Grundfest, H., Campbell, B.: Origin, conduction and termination of impulses in the dorsal spinocerebellar tracts of cats. J. Neurophysiol. 5, 275–294 (1942).

    Google Scholar 

  • Häggqvist, G.: Analyse der Faserverteilung in einem Rückenmarkquerschnitt (Th 3). Z. mikr.-anat. Forsch. 39, 1–34 (1936).

    Google Scholar 

  • Hámori, J., Iriuchijima, J.: The “crossing-over” synapse: an electron microscope study of the mole3ular layer in the cerebellar cortex. Acta biol. Acad. Sci. hung. 15, 95–117 (1964).

    Google Scholar 

  • Heimer, L., Wall, P.D.: The dorsal root distribution to the substantia gelatinosa of the rat with a note on the distribution in the cat. Exp. Brain Res. 6, 89–99 (1968).

    PubMed  CAS  Google Scholar 

  • Holmqvist, B., Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spinocerebellar tract in the cat. V. Further experiments on convergence of excitatory and inhibitory actions. Acta physiol. scand. 38, 76–90 (1956).

    PubMed  CAS  Google Scholar 

  • Hongo, T., Jankowska, E., Lundberg, A.: Convergence of excitatory and inhibitory action on interneurones in the lumbosacral cord. Exp. Brain Res. 1, 338–358 (1966).

    PubMed  CAS  Google Scholar 

  • Hongo, T., Jankowska, E., Lundberg, A.: Post-synaptic excitation and inhibition from primary afferents in neurones of the spinocervical tract. J. Physiol. (Lond.) 199, 569–592 (1968).

    CAS  Google Scholar 

  • Hongo, T., Okada, Y.: Cortically evoked pre- and postsynaptic inhibition of impulse transmission to the dorsal spinocerebellar tract. Exp. Brain Res. 3, 163–177 (1967).

    PubMed  CAS  Google Scholar 

  • Hubbard, J.I., Oscarsson, O.: Localization of the cell bodies of the ventral spinocerebellar tract in lumbar segments of the cat. J. comp. Neurol. 118, 199–204 (1962).

    PubMed  CAS  Google Scholar 

  • Hultborn, J., Jankowska, E., Lindström, S.: Recurrent inhibition from motor axon ollaterals in interneurons monosynaptically activated from Ia afferents. Brain Res. 9, 367–369 (1968).

    PubMed  CAS  Google Scholar 

  • Imai, Y., Kusama, T.: Distribution of the dorsal root fibers in the cat. An experimental study with the Nauta method. Brain Res. 13, 338–359 (1969).

    PubMed  CAS  Google Scholar 

  • Jänig, W., Zimmermann, M.: Presynaptic depolarization of myelinated afferent fibers evoked by stimulation of cutaneous C fibers. J. Physiol. (Lond.) 214, 29–50 (1971).

    Google Scholar 

  • Jankowska, E., Jukes, M.G.M., Lund, S.: On the presynaptic inhibition of transmission to the dorsal spinocerebellar tract. J. Physiol. (Lond.) 177, 19–21P (1964).

    Google Scholar 

  • Jankowska, E., Lindström, S.: Morphological identification of physiologically defined neurons in the cat spinal cord. Brain Res. 20, 323–326 (1970).

    PubMed  CAS  Google Scholar 

  • Jansen, J.K.S., Nicolaysen, K., Rudjord, T.: Discharge pattern of neurones of the dorsal spinocerebellar tract activated by static extension of primary endings of muscle spindles. J. Neurophysiol. 29, 1061–1086 (1966).

    PubMed  CAS  Google Scholar 

  • Kahler, O.: Faserverlauf in den Hintersträngen des Rückenmarks. Short communication at the 55th Meeting of German biologists and physicians of Eisenach. Berl. klin. Wschr. 640–641 (1882).

    Google Scholar 

  • Kerr, F.W.L.: The ultrastructure of the spinal tract of the trigeminal nerve and the substantia gelatinosa. Exp. Neurol. 16, 359–376 (1966).

    PubMed  CAS  Google Scholar 

  • Koelle, G.B.: Significance of acetylcholinesterase in central synaptic transmission. Fed. Proc. 28, 95–100 (1969).

    PubMed  CAS  Google Scholar 

  • Kruger, L., Siminoff, R., Witkovsky, P.: Single neuron analysis of dorsal column nuclei and spinal nucleus of trigeminal in cat. J. Neurophysiol. 24, 333–349 (1961).

    PubMed  CAS  Google Scholar 

  • Kuno, M., Miyahara, T.: Factors responsible for multiple discharge of neurons in Clarke’s column. J. Neurophysiol. 31, 624–638 (1968).

    PubMed  CAS  Google Scholar 

  • Laporte, Y., Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spinocerebellar tract in the cat. II. Single fiber recording in Flechsig’s fasciculus on electrical stimulation of various peripheral nerves. Acta physiol. scand. 36, 187–203 (1956).

    Google Scholar 

  • Lenhossék, M. v.: Die feinere Bau des Nervensystems im Lichte neuester Forschungen. Eine allgemeine Betrachtung der Strukturprincipien des Nervensystems, nebst einer Darstellung des feineren Baues des Rückenmarkes, p. 409. Berlin: Korfeld 1895.

    Google Scholar 

  • Leontovich, T.A., Zhukova, G.P.: The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of Carnivora. J. comp. Neurol. 121, 347–380 (1963).

    PubMed  CAS  Google Scholar 

  • Lloyd, D.P.C., McIntyre, A.K.: Dorsal column conduction of group I muscle afferent impulses and their relay through Clarke’s column. J. Neurophysiol. 13, 39–54 (1950).

    PubMed  CAS  Google Scholar 

  • Loewy, A.: A study of neuronal types in Clarke’s column in the adult cat. J. comp. Neurol. 139, 53–79 (1970).

    PubMed  CAS  Google Scholar 

  • Lundberg, A.: Ascending spinal hindlimb pathways in the cat. In: Physiology of Spinal Neurons. pp. 135–163. Ed. by J.C. Eccles and J.P. Schadé. Progress in Brain Research, vol. 12. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Lundberg, A.: Function of the ventral spinocerebellar tract. Exp. Brain Res. 12, 317–330 (1971).

    PubMed  CAS  Google Scholar 

  • Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spinocerebellar tract in the cat. IV. Synaptic connections of afferents from Golgi tendon organs and muscle spindles. Acta physiol. scand. 38, 53–75 (1956).

    PubMed  CAS  Google Scholar 

  • Lundberg, A., Oscarsson, O.: Functional organization of the dorsal spinocerebellar tract in the cat. VII. Identification of units by antidromic activation from the cerebellar cortex with recognition of five functional subdivisions. Acta physiol. scand. 50, 356–374 (1960).

    PubMed  CAS  Google Scholar 

  • Lundberg, A., Oscarsson, O.: Three ascending spinal pathways in the dorsal part of the lateral funiculus. Acta physiol. scand. 51, 1–16 (1961).

    PubMed  CAS  Google Scholar 

  • Lundberg, A., Weight, F.: Functional organizations of the ventral spinocerebellar tract. Exp. Brain Res. 12, 295–316 (1971).

    PubMed  CAS  Google Scholar 

  • Mannen, H.: A new approach for following the total course of the axon of an individual neuron in Golgi stained successive serial sections, Preliminary Report. Proc. of the Japan Acad. vol. 45, 633–638 (1969).

    Google Scholar 

  • Marie, P.: Leçons sur les maladies de la moelle. Paris: Masson, G. 1892.

    Google Scholar 

  • Matsushita, M.: Some aspects of the interneuronal connections in cat’s spinal gray matter. J. comp. Neurol. 136, 57–80 (1969).

    PubMed  CAS  Google Scholar 

  • Matsushita, M.: The axonal pathways of spinal neurons in the cat. J. comp. Neurol. 138, 391–417 (1970).

    PubMed  CAS  Google Scholar 

  • Melzack, R., Wall, P.D.: Pain mechanisms: a new theory. Science 150, 971–979 (1965).

    PubMed  CAS  Google Scholar 

  • Morin, F.: A new spinal pathway for cutaneous impulses. Amer. J. Physiol. 183, 245–252 (1955).

    PubMed  CAS  Google Scholar 

  • Nansen, F.: The structure and combination of the histological elements of the contral nervous system. Bergens Museums Aarsberetning, pp. 24–214, 1886.

    Google Scholar 

  • Norsell, U., Voorhoeve, P.: Tactile pathway from the hindlimb to the cerebral cortex in cat. Acta physiol. scand. 54, 9–17 (1962).

    Google Scholar 

  • Nyberg-Hansen, R.: Sites and mode of termination of reticulo spinal fibers in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 124, 71–100 (1965).

    PubMed  CAS  Google Scholar 

  • Nyberg-Hansen, R.: Functional organization of descending supraspinal fiber systems to the spinal cord. Anatomical observations and physiological correlations. Reviews of Anatomy, Embryology and Cell Biology, vol. 39. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Nyberg-Hansen, R., Brodal, A.: Sites of termination of corticospinal fibers in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 120, 369–391 (1963).

    PubMed  CAS  Google Scholar 

  • Nyberg-Hansen, R., Mascitti, T. A.: Sites and mode of termination of fibers of the vestibulospinal tract in the cat. An experimental study with silver impregnation methods. J. comp. Neurol. 122, 369–387 (1964).

    PubMed  CAS  Google Scholar 

  • Oscarsson, O.: Primary afferent collaterals and spinal relays of the dorsal and ventral spinocerebellar tracts. Acta physiol. scand. 40, 222–231 (1957).

    PubMed  CAS  Google Scholar 

  • Oscarsson, O.: Differential course and organization of uncrossed and crossed long ascending spinal tracts. In: Physiology of Spinal Neurons. pp. 164–178. Ed. by J.C. Eccles and J.P. Schadé. Progress in Brain Research, vol. 12. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Pomeranz, B., Wall, P.D., Weber, W.V.: Cord cells responding to fine myelinated afferents from viscera, muscle and skin. J. Physiol. (Lond.) 199, 511–532 (1968).

    CAS  Google Scholar 

  • Ralston, Henry J.: The organization of the substantia gelatinosa Rolandi in the cat lumbosacral spinal cord. Z. Zellforsch. 67, 1–23 (1965).

    PubMed  Google Scholar 

  • Ramón Y Cajal, S.: Sur l’origine et les ramifications des fibres nerveuses de la moelle embryonnaire. Anat. Anz. 85–95; 111–119, (1890).

    Google Scholar 

  • Ramón Y Cajal, S.: Histologie du Système Nerveux de l’Homme et des Vertébrés. Tome 1–2. Paris: Maloine 1909–1911.

    Google Scholar 

  • Ramón-Moliner, E., Nauta, W.H.J.: The isodendritic core of the brain stem. J. comp. Neurol. 126, 311–335 (1966).

    PubMed  Google Scholar 

  • Ranson, S.W.: The course within the spinal cord of the non-medullated fibers of the dorsal roots. A study of Lissauer’s tract in the cat. J. comp. Neurol. 23, 259–281 (1913).

    Google Scholar 

  • Ranson, S.W.: The tract of Lissauer and the substantia gelatinosa Rolandi. Amer. J. Anat. 16, 97–126 (1914).

    Google Scholar 

  • Ranson, S.W., Billingsley, P.R.: The conduction of painful impulses in the spinal nerves. Amer. J. Physiol. 40, 571–589 (1916).

    Google Scholar 

  • Ranson, S.W., Hess, C.L. v.: The conduction within the spinal cord of afferent impulses producing pain an the vasomotor reflexes. Amer. J. Physiol. 38, 129–152 (1915).

    Google Scholar 

  • Réthelyi, M.: The Golgi architecture of Clarke’s column. Acta morph. Acad. Sci. hung. 16, 311–330 (1968).

    Google Scholar 

  • Réthelyi, M.: Ultrastructural synaptology of Clarke’s column. Exp. Brain Res. 11, 159–174 (1970).

    PubMed  Google Scholar 

  • Réthelyi, M.: On the central core of the spinal gray matter. In preparation (1972).

    Google Scholar 

  • Réthelyi, M., Szentágothai, J.: On a peculiar type of synaptic arrangement in the substantia gelatinosa of Rolando. 8th International Congress of Anatomists, p. 99. Stuttgart: Georg Thieme 1965.

    Google Scholar 

  • Réthelyi, M., Szentágothai, J.: The large synaptic complexes of the substantia gelatinosa. Exp. Brain Res. 7, 258–274 (1969).

    PubMed  Google Scholar 

  • Rexed, B.: The cytoarchitectonic organization of the spinal cord in the cat. J. comp. Neurol. 96, 415–495 (1952).

    Google Scholar 

  • Rexed, B.: A cytoarchitectonic atlas of the spinal cord in the cat. J. comp. Neurol. 100, 297–379 (1954).

    PubMed  CAS  Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Are there Renshaw cells? Anat. Rec. 148, 332 (1964).

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Terminal axonal patterns in cat spinal cord. I. The lateral corticospinal tract. Brain Res. 2, 333–350 (1966 a).

    PubMed  CAS  Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Spinal motoneurons, interneurons and Renshaw cells. A Golgi study. Arch. ital. Biol. 104, 328–353 (1966b).

    Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Terminal axonal pattern in cat spinal cord. II. The dorsal horn. Brain Res. 9, 32–58 (1968).

    PubMed  CAS  Google Scholar 

  • Scheibel, M.E., Scheibel, A.B.: Terminal patterns in cat spinal cord. III. Primary afferent collaterals. Brain Res. 13, 417–443 (1969).

    PubMed  CAS  Google Scholar 

  • Schimert, J.: Die Endigung des Tractus vestibulospinalis. Z. Anat. Entwickl.-Gesch. 108, 761–767 (1938).

    Google Scholar 

  • Schimert, J.: Das Verhalten des Hinterwurzelkollateralen im Rückenmark. Z. Anat. Entwickl.-Gesch. 109, 665–687 (1939).

    Google Scholar 

  • Schmidt, R.F.: The functional organization of presynaptic inhibition of mechanoreceptor afferents. In: Structure and Function of Inhibitory Neuronal Mechanisms, pp. 227–233. Ed. by C. von Eitler, S. SkoglUnd and U. Söderberg. Oxford: Pergamon Press 1968.

    Google Scholar 

  • Schultze, F.: Beitrag zur Lehre von der secundären Degeneration im Rückenmarke des Menschen nebst Bemerkungen über die Anatomie der Tabes. Arch. Psychiat. Nervenkr. 14, 359–390 (1883).

    Google Scholar 

  • Selzer, M., Spencer, W.A.: Convergence of visceral and cutaneous afferent pathways in the lumbar spinal cord. Brain Res. 14, 331–348 (1969).

    PubMed  CAS  Google Scholar 

  • Sprague, J.M.: The distribution of dorsal root fibers on motor cells in the lumbosacral spinal cord of the cat and the site of excitatory and inhibitory terminals in monosynaptic pathways. Proc. roy. Soc. B. 149, 534–556 (1958).

    CAS  Google Scholar 

  • Sprague, J.M., Ha, H.: The terminal fields of dorsal root fibers in the lumosacral spinal cord of the cat and the dendritic organization of the motor nuclei. In: Organization of the spinal cord, pp. 120–152. Ed. by J.C. Eccles and J.P. Schadé. Progress in Brain Research, vol. 11. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Staal, A.: Subcortical projections on the spinal grey matter of the cat. Thesis. Leiden: Koninklijke Drukkerijen Lankhout-Immig N.V. S-Gravenhage, 1961.

    Google Scholar 

  • Sterling, P., Kuypers, H.G. J.M.: Anatomical organization of the brachial spinal cord of the cat. I. The distribution of dorsal root fibers. Brain Res. 4, 1–15 (1967a).

    PubMed  CAS  Google Scholar 

  • Sterling, P., KUypers, H.G.J.M.: Anatomical organization of the brachial spinal cord of the cat. II. The motoneuron plexus. Brain Res. 4, 16–32 (1967b).

    PubMed  CAS  Google Scholar 

  • Strazniczky, K.: Function of heterotopic spinal cord segments investigated in the chick. Acta biol. Acad. Sci. hung. 14, 143–153 (1963).

    Google Scholar 

  • Székely, G.: Functional specificity of spinal cord segments in the control of limb movements. J. Embryol. exp. Morph. 11, 431–444 (1963).

    PubMed  Google Scholar 

  • Székely, G.: Embryonic d3termination of neuronal connections. Advanc. Morphogenes. 5, 181–219 (1966).

    Google Scholar 

  • Székely, G., Szentágothai, J.: Experiments with “model nervous systems”. Acta biol. Acad. Sci. hung. 12, 253–269 (1962 a).

    Google Scholar 

  • Székely, G., Szentágothai, J.: Reflex and behaviour patterns elicited from supernumerary limbs in the chick. J. Embryol. exp. Morph. 10, 140–151 (1962b).

    Google Scholar 

  • Szentágothai, J.: Anatomical considerations of monosynaptic reflex arcs. J. Neurophysiol. 11, 445–454 (1948).

    PubMed  Google Scholar 

  • Szentágothai, J.: Short propriospinal neurons and intrinsic connections of the spinal gray matter. Acta morph. Acad. Sci. hung. 1, 81–94 (1951).

    Google Scholar 

  • Szentágothai, J.: Kisérlet az idegrendszer szöveti elemeinek természetes rendszerezésére (An attempt at a “natural systematization” of nervous elements). Magy. Tud. Akad., Biol. orv. Tud. Osztal. Közl. 3, 365–412 (1952), Hungarian.

    Google Scholar 

  • Szentágothai, J.: The anatomical basis of synaptic transmission of excitation and inhibition in motoneurons. Acta morph. Acad. Sci. hung. 8, 287–309 (1958).

    Google Scholar 

  • Szentágothai, J.: Anatomical aspects of inhibitory pathways and synapses. In: Nervous Inhibitions. pp. 32–46. Ed. by F. Florey. Oxford-London-New York: Pergamon Press 1961a.

    Google Scholar 

  • Szentágothai, J.: Somatotopic arrangement of primary sensory neurons in Clarke’s column. Acta morph. Acad. Sci. hung. 10, 307–311 (1961b).

    Google Scholar 

  • Szentágothai, J.: Discussion Remarks in Basic Research in Paraplegia. Ed. by J.D. French and R.W. Porter, pp. 143–150. Springfield, Ill.: Charles C. Thomas 1962.

    Google Scholar 

  • Szentágothai, J.: Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J. comp. Neurol. 122, 219–240 (1964a).

    PubMed  Google Scholar 

  • Szentágothai, J.: Propriospinal pathways and their synapses. In: Organization of the Spinal Cord. pp. 155–177. Ed. by J.C. Eccles and J.P. Schadé. Progress in Brain Research, vol. 11. Amsterdam-New York: Elsevier 1964b.

    Google Scholar 

  • Szentágothai, J.: Pathways and subcortical relay mechanisms of visceral afferents. Acta neuroveg. (Wien) 28, 103–120 (1966a).

    Google Scholar 

  • Szentágothai, J.: New anatomical concepts of the brain stem. In: Clinical Experiences in brain stem Disorders. pp. 15–28. Ed. by P. Juhász, Z. Aszalos and R. Walsa. Acta 25. Conventus Neuropsychiatrici et EEG Hungarici Budapestini 1966 b.

    Google Scholar 

  • Szentágothai, J.: Synaptic architecture of the spinal motoneuron pool. In: Recent Advances in Clinical Neurophysiology, Electroenceph. Clin. Neurophysiology, Suppl. 25, pp. 4–19. Ed. by L. Widén. Amsterdam: Elsevier 1967a.

    Google Scholar 

  • Szentágothai, J.: The anatomy of complex integrative units in the nervous system. In: Results in Neuroanatomy, Neurohistology, Neuromorphology and Neurophysiology, pp. 9–45. Ed. by K. Lissák. Budapest: Acad. Publ. 1967b.

    Google Scholar 

  • Szentágothai, J.: Technical problems in the study of neural networks. Symposium on Neurobiology of Invertebrates, pp. 17–25. Budapest: Acad. Publ. 1967c.

    Google Scholar 

  • Szentágothai-Schimert, J.: Die Bedeutung des Faserkalibers und der Markscheidendicke im Zentralnervensystem. Z. Anat. Entwickl.-Gesch. 111, 201–223 (1941a).

    Google Scholar 

  • Szentágothai-Schimert, J.: Die Endigungsweise der absteigenden Rückenmarksbahnen. Z. Anat. Entwickl.-Gesch. 111, 322–330 (1941b).

    Google Scholar 

  • Szentágothai, J., Albert, A.: The synaptology of Clarke’s column. Acta morph. Acad. Sci. hung. 5, 43–51 (1955).

    Google Scholar 

  • Szentágothai, J., Kiss, T.: Projections of dermatomes on the substantia gelatinosa. Arch. Neurol. Psychiat. (Chic.) 62, 734–744 (1949).

    Google Scholar 

  • Szentágothai, J., Székely, G.: Zum Problem der Kreuzung von Nervenbahnen. Acta biol. Acad. Sci. hung. 6, 215–279 (1956).

    Google Scholar 

  • Taub, A., Bishop, P.O.: The spinocervical tract: dorsal column linkage: conduction velocity, primary afferent spectrum. Exp. Neurol. 13, 1–21 (1965).

    PubMed  CAS  Google Scholar 

  • Thomas, R.C., Wilson, V.J.: Precise localization of Renshaw cells with a new marking technique. Nature (Lond.) 206, 211–213 (1965).

    CAS  Google Scholar 

  • Torvik, A., Brodal, A.: The origin of reticulospinal fibers in the cat. An experimental study. Anat. Rec. 128, 113–138 (1957).

    CAS  Google Scholar 

  • Tower, Sarah S.: Function and structure in the chronically isolated lumbo-sacral spinal cord of the dog. J. comp. Neurol. 67, 109–131 (1937).

    Google Scholar 

  • Trepinski, P.: Die embryonalen Fasersysteme in den Hintersträngen und ihre Degeneration bei der Tabes dorsalis. Arch. Psychiat. Nervenkr. 54–81 (1898).

    Google Scholar 

  • Uchizono, K.: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature (Lond.) 207, 642–643 (1965).

    CAS  Google Scholar 

  • Uchizono, K.: Synaptic organization of the Purkinje cells in the cerebellum of the cat. Exp. Brain Res. 4, 97–113 (1967).

    PubMed  CAS  Google Scholar 

  • Vasilenko, D.A., Kostyuk, P.G.: Functional properties of interneurons activated mono-synaptically by the pyramidal tract. Zh. vyssh. nerv. Deyat. Pavlova 16, 1046–1056 (1966), Russian.

    CAS  Google Scholar 

  • Vasilenko, D.A., Zadorozhny, A.G., Kostyuk, P.G.: Synaptic processes in the spinal neurons, monosynaptically activated by the pyramidal tract. Bull. exp. Biol. Med. 64, 20–25 (1967), Russian.

    Google Scholar 

  • Wall, P. D.: The origin of a spinal cord low potential. J. Physiol. (Lond.) 164, 508–526 (1962).

    CAS  Google Scholar 

  • Wall, P.D.: The laminar organization of dorsal horn and effects of descending impulses. J. Physiol. (Lond.) 188, 403–424 (1967).

    CAS  Google Scholar 

  • Wall, P.D., Freeman, J., Major, D.: Dorsal horn cells in spinal and in freely moving rats. Exp. Neurol. 19, 519–529 (1967).

    PubMed  CAS  Google Scholar 

  • Weight, F.F.: Cholinergic mechanisms in recurrent inhibition of motoneurons. In Public Health Science Publ. 1836, 69–75 (1968).

    Google Scholar 

  • Wilson, V.J., Burgess, P.R.: Disinhibition in the cat spinal cord. J. Neurophysiol. 25, 392–404 (1962).

    PubMed  CAS  Google Scholar 

  • Zimmermann, M.: Dorsal root potentials after C-fiber stimulation. Science 160, 896–898 (1968).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ainsley Iggo

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag Berlin · HeidelBerg

About this chapter

Cite this chapter

Réthelyi, M., Szentágothai, J. (1973). Distribution and Connections of Afferent Fibres in the Spinal Cord. In: Iggo, A. (eds) Somatosensory System. Handbook of Sensory Physiology, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65438-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65438-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65440-4

  • Online ISBN: 978-3-642-65438-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics