Skip to main content

Abstract

The deep sea, or abyssal zone, is the largest single environmental zone in the world. The enormity of this zone is illustrated by the following comparative figures: 70% of the earth’s surface is covered by oceanic waters while approximately 94% of the ocean bottom and 86% of the ocean's area is in excess of depths of 2,000 meters (Bruun, 1957). In general, the physical parameters are constant at depths below 2,000 meters. The temperature variation in the principal oceans is small; from latitude of 50°N to 58°S the maximum range is only 3.6°C to 0.6°C (Sverdrup et al., 1942). At any one geographical location little seasonal variation is observed; however, there is some thermal variation with depth below 2,000 meters, since the waters immediately above the sea floor are slightly warmer (Bruun, 1957). Salinities average 34.8 ± 0.2 0/00 and vary little with the seasons either at one location or between oceans with the exception of smaller accessory seas (Bruun, 1957). The concentration of oxygen is both constant and high. Between 2,000–4,000 meters, oxygen content ranges from 6.30 to 6.34 ml/liter. Twenty to 50 meters above the bottom, down to approximately 1 meter from the bottom, oxygen concentration values range downward from 4.1 to 3.6 ml/liter (Koczy, 1954). The only light present in this region is produced by bioluminescent organisms, since light striking the ocean’s surface penetrates only a relatively short distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruun, A. (1957). Deep sea and abyssal depths. In Treatise on Marine Ecology and Paleoecology. J. W. Hedgpeth, ed. Mem. Geol. Soc. Am. 67: 641 - 672.

    Google Scholar 

  • Denton, E. J., and F. J. Warren (1957). The photosensitive pigment in the retinae of deep-sea fish. J. mar. biol. Ass. U.K., 36: 651 - 662.

    Article  CAS  Google Scholar 

  • Ebbeke, U. (1935). Über die Wirkung hoher Drucke auf marine Lebewesen. Pflügers Arch. ges Physiol., 236: 648 - 657.

    Article  Google Scholar 

  • George, R. Y., and R. J. Menzies (1967). Indication of cyclic reproductive activity in abyssal organisms. Nature, London, 215: 878.

    Article  Google Scholar 

  • Gillen, R. G. (1971). The effect of pressure on muscle lactate dehydrogenase activity of some deep-sea and shallow-water fishes. Mar. Biol., 8: 7 - 11.

    Article  CAS  Google Scholar 

  • Gordon, M. S., B. H. Amdur, and P. F. Scholander (1962). Freezing resistance in some northern fishes. Biol. Bull., 122: 52 - 56.

    Article  Google Scholar 

  • Heezen, B. C., M. Ewing, and R. J. Menzies (1955). The influence of submarine turbidity currents on abyssal productivity. Oikos, 6: 170 - 182.

    Article  Google Scholar 

  • Hill, E. P., and R. Y. Morita (1965). Dehydrogenase activity under hydrostatic pressure by isolated mitochondria obtained from Allomyces macrogynus. Limnol. Oceanogr., 9: 243 - 248.

    Article  CAS  Google Scholar 

  • Hochachka, P. W., D. E. Schneider, and A. Kuznetson (1970). Interacting pressure and temperature effects on enzymes of marine poikilotherms: Catalytic and regulatory properties of FDPase from deep and shallow-water fishes. Mar. Biol., 7: 285 - 293.

    Article  CAS  Google Scholar 

  • Johnson, F., H. H. Eyring, and M. J. Pollisar (1954). The Kinetic Basis of Molecular Biology. John Wiley & Sons, Inc., New York. Chapters 9 and 10.

    Google Scholar 

  • Koczy, F. F. (1954). A survey on deep-sea features taken during the Swedish deep-sea expedition. Deep-Sea Res., 1: 176 - 184.

    Article  Google Scholar 

  • Kuenen, H. P. (1950). Marine Geology. John Wiley & Sons, Inc., New York. Laverack, M. S. (1968). On the receptors of marine invertebrates. Oceanogr. Mar. Biol. Ann. Rev., 6: 249 - 324.

    Google Scholar 

  • Marsland, D. A. (1958). Cells at high pressure. Sci. Amer., 199: 36 - 43.

    Article  PubMed  CAS  Google Scholar 

  • Menzies, R. J. (1962). On the food and feeding habits of abyssal organisms as exemplified by the Isopoda. Int. Revue ges Hydrobiol., 47: 339 - 358.

    Article  Google Scholar 

  • Menzies, R. J., R. Y. George, and R. Gilbert (1968). Vision index for isopod Crustacea

    Google Scholar 

  • related to latitude and depth. Nature, London,217:93-95.

    Google Scholar 

  • Menzies, R. J. and J. B. Wilson (1961). Preliminary field experiments on the relative importance of pressure and temperature on the penetration of marine invertebrates into the deep sea. Oikos, 12: 302 - 309.

    Article  Google Scholar 

  • Menzies, R. J., J. S. Zaneveld, and R. M. Pratt (1967). Transported turtle grass as a source of organic enrichment of abyssal sediments off North Carolina. Deep-Sea Res., 14: 111 - 112.

    Google Scholar 

  • Morita, R. J. (1967a). Effect of hydrostatic pressure on succinic, formic, and malic dehydrogenases in Escherichia coli. J. Bact., 74: 251 - 255.

    Google Scholar 

  • Morita, R. J. (1967b). Effects of hydrostatic pressure on marine microorganisms. Ann. Rev. Oceanogr. Mar. Biol., 5: 187 - 203.

    Google Scholar 

  • Naroska, V. (1968). Vergleichende Untersuchungen über die Wirkung des hydrostatischen Druckes auf die Úberlebensfahigkeit und die Stoffwechselintensität mariner Evertebraten und Teleostier. Kieler Meeresforsch., 24: 95 - 123.

    Google Scholar 

  • Pease, D. C., and D. A. Marsland (1939). The cleavage of Ascaris eggs under exceptionally high pressure. J. Cell. Comp. Physiol., 14: 407 - 408.

    Article  Google Scholar 

  • Riley, G. A., D. Van Hemert, and P. A. Wangersky (1965). Organic aggregates in tropical and subtropical surface waters of the North Atlantic Ocean. Limnol. Oceanogr., 9: 546 - 550.

    Article  Google Scholar 

  • Sanders, H. L. (1968). Marine benthic diversity: A comparative study. The American Naturalist, 102: 243 - 282.

    Article  Google Scholar 

  • Sanders, H. L., and R. R. Hessler (1969). Ecology of the deep-sea benthos. Science, 163: 1419 - 1424.

    Article  PubMed  CAS  Google Scholar 

  • Schlieper, C. (1968). High pressure effects on marine invertebrates and fishes. Mar. Biol., 2: 5 - 12.

    Article  Google Scholar 

  • Schlieper, C., H. Flügel, and H. Theede (1967). Experimental investigations of the cellular resistance ranges of marine temperate and tropical bivalves: Results of the Indian Ocean expedition of the German Research Association. Physiol. Zool., 40:345-360.

    Google Scholar 

  • Schlieper, C., and R. Kowalski (1956). Über den Einfluss des Mediums auf die thermische und osmotische Resistenz des Kiemengewebes der Miesmuschel Mytilus edulis L. Kieler Meeresforsch., 12: 37 - 45.

    Google Scholar 

  • Schoener, A. (1968). Evidence for reproductive periodicity in the deep sea. Ecology, 49: 81 - 87.

    Article  Google Scholar 

  • Scholander, P. F., and L. Van Dam (1953). Composition of the swimbladder gas in deep sea fishes. Biol. Bull., 104: 75 - 86.

    Article  CAS  Google Scholar 

  • Scholander, P. F., and L. Van Dam (1954). Secretion of gases against high pressures in the swimbladder of deep sea fishes. I. Oxygen dissociation in blood. Biol. Bull., 197: 247 - 259.

    Article  Google Scholar 

  • Sverdrup, H. V., M. W. Johnson, and R. H. Fleming (1942). The Oceans, Their Physics, Chemistry and General Biology. Prentice-Hall, New York.

    Google Scholar 

  • Theede, H., and A. Ponat (1970). Die Wirkung der Sauerstoffspannung auf die Druckresistenz einiger mariner Wirbelloser. Mar. Biol., 6: 66 - 73.

    Article  Google Scholar 

  • Thorson, G. (1950). Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev., 25: 1 - 45.

    Article  Google Scholar 

  • Vinogradov, M. E. (1962). Feeding of the deep-sea zooplankton. Rapp. Proc. Cons. Int. Explor. Mer., 153: 114 - 120.

    Google Scholar 

  • Welsh, J. D., and F. A. Chase, Jr. (1938). Eyes of deep-sea crustaceans. 2. Sergestide. Biol. Bull., 74: 364 - 375.

    Article  Google Scholar 

  • Zenkevitch, L. A. (1954). Erforschung der Tiefseefauna im nordwestlichen Teil des Stillen Ozeans. Publ. Un. int. Sci. biol. (Ser. B), 16: 72 - 85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Vernberg, W.B., Vernberg, F.J. (1972). The Deep Sea. In: Environmental Physiology of Marine Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65334-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65334-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65336-0

  • Online ISBN: 978-3-642-65334-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics