Skip to main content

Synergetics of Fluid-Dynamic and Biochemical Catastrophe Reactions in Coronary Artery Thrombosis

  • Conference paper
Unstable Angina

Abstract

The cardiovascular system is an ensemble of dynamic elements (pumps, conduits, and feedback regulators) that offers a striking example of dynamic stability, adaptability, and efficacy in complex biological systems. The fundamental regularities of such cooperative systems have become the topic of a new scientific discipline, termed synergetics [1, 2] or chaos theory [3–7], dealing with the emanation of dynamic cooperativity in physical, chemical, and biological processes. Large-scale biological order is comprehensible as the cooperativity of many subsystems, i.e., as the result of joint efforts in dynamic systems; the latter must be construed as limited compartments in which there is a continuous flow of energy and matter. Provided that in such systems a steady state far from thermodynamic equilibrium is created, coherent behavior spontaneously sets in, i.e., an a priori unexpected, highly efficient, and stable cooperativity which is governed by universal physical and thermodynamic laws. In this context it is important to realize that synergetics is concerned with processes rather than with reactions; the consideration of forces is replaced by consideration of powers (in the classical sense of thermodynamics).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haken H (1978) Synergetics. An introduction —nonequilibrium phase transitions and self-organization in physics, chemistry and biology. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Haken H, Haken-Krell M (1989) Entstehung von biologischer Information und Ordnung. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  3. Prigogine I, Stengers I (1986) Dialog mit der Natur. Neue Wege naturwissenschaftlichen Denkens, 5th edn. Piper, Munich

    Google Scholar 

  4. Schuster HG (1981) Deterministic chaos: strange attractors and chaotic motions of dynamical systems. Rev Mod Phys 53: 655–673

    Article  Google Scholar 

  5. Hess B, Markus B (1984) Time pattern transitions in biochemical processes. In: Frehland E (ed) Synergetics — from microscopic to macroscopic order. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Ruelle D, Takens F (1971) On the nature of turbulence. Commun Math Phys 20: 167–189

    Article  Google Scholar 

  7. Mandelbrot BB (1982) The fractal geometry of nature, chap 10: geometry of turbulence intermittency. Freeman, New York, pp 97–124

    Google Scholar 

  8. Schmid-Schönbein H (1990) Synergetic order and chaotic malfunctions of the circulatory systems in “multiorgan failure”: breakdown of cooperativity of hemodynamic functions as cause acute microvascular pathologies. In: Update in intensive care and emergency medicine, vol 11. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Glass L, Schrier A, Belair J (1986) Chaotic cardiac rhythms In: Holden AV (ed) Chaos. Princeton University Press, New York, pp 237–264

    Google Scholar 

  10. Murray CD (1926) The physiological principle of minimum work. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12: 207–214

    Article  PubMed  CAS  Google Scholar 

  11. Schmid-Schönbein H, Böddeker L, Kiesewetter H, Pütz H (1980) Einfluß der Thrombozyten-zahl auf die räumliche Ausbreitung der Gerinnung in rekalzifiziertem, stehendem Citrat-Plasma. In: Deutsch E, Lechner K (eds) Fibrinolyse, Thrombose, Hämostase. Schattauer, Stuttgart, pp 681–685

    Google Scholar 

  12. Zwaal RFA, Hemker HC (1986) Blood coagulation. Elsevier, Amsterdam

    Google Scholar 

  13. Schmid-Schönbein H (1988) Thrombose als ein Vorgang in “strömendem Blut”: Wechselwirkung fluiddynamischer, rheologischer und enzymologischer Ereignisse beim Ablauf von Thrombozytenaggregation und Fibrinpolymerisation. Hämostasiologie 8: 149–172

    Google Scholar 

  14. Schmid-Schönbein H, Wurzinger LJ (1986) Transport phenomena in pulsating post-stenotic vortex flow in arteries. An interactive concept of fluid-dynamic, haemorheological and biochemical processes in white thrombus formation. Nouv Rev Fr Hematol 28: 257–267

    PubMed  Google Scholar 

  15. Frojmovic MM, Panjwani R (1975) Blood cells structure-function studies: light transmission and attenuation coefficients of suspensions of blood cells and model particles at rest and with stirring. J Lab Clin Med 86: 326–343

    PubMed  CAS  Google Scholar 

  16. Naumann A, Schmid-Schönbein H (1983) A fluid-dynamicist’s and a physiologist’s look at arterial flow and arteriosclerosis. In: Schettler G, Nerem RM, Schmid-Schönbein H, Mörl H, Diehm C (eds) Fluid dynamics as a localizing factor for atherosclerosis. Springer, Berlin Heidelberg New York, p 9

    Chapter  Google Scholar 

  17. Liepsch D (1987) Strömungsuntersuchungen an Modellen menschlicher Blutgefäß-Systeme. VDI, Düsseldorf (Fortschrittberichte VDI ser 7, Strömungstechnik no 13 )

    Google Scholar 

  18. Schmid-Schönbein H, Naumann A (1984) Fluiddynamische, zellphysiologische und biochemische Aspekte der Atherogenese unter Strömungseinflüssen. Westdeutscher Verlag, Opladen, pp 6–38

    Google Scholar 

  19. Friedman MH, Deters OJ, Mark FF, Bargeron CB, Hutchins GM (1983) Geometric effects on the hemodynamic environment of the arterial wall: a basis for geometric risk factors? In: Schettler G, Nerem RM, Schmid-Schönbein H, Mörl H, Diehm C (eds) Fluid dynamics as a localizing factor for atherosclerosis. Springer, Berlin Heidelberg New York, pp 71–78

    Chapter  Google Scholar 

  20. Karino T, Goldsmith HL (1979) Aggregation of human platelets in an annular vortex distal to a tubular expansion. Microvasc Res 17: 217–237

    Article  PubMed  CAS  Google Scholar 

  21. Karino T, Goldsmith HL (1979) Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc Res 17: 238–262

    Article  PubMed  CAS  Google Scholar 

  22. Kenner TH, Busse R (1980) Cardiovascular system in dynamic. Plenum, New York

    Google Scholar 

  23. Schmid-Schönbein H (1990) Synergetics of normal and pathological blood movements in the cardiovascular system. In: Mosora F, Caro C, Baquey CH, Schmid-Schönbein H, Pelissier R, Krause E (eds) Biomechanical transport processes. Plenum, New York

    Google Scholar 

  24. Schmid-Schönbein H (1990) Synergetics of normal and pathological blood movements in the cardiovascular system. In: Mosora F, Caro C, Baquey CH, Schmid-Schönbein H, Pelissier R, Krause E (eds) Biomechanical transport processes. Plenum, New York

    Google Scholar 

  25. Höök M, Kjellen L, Johansson S, Robinson J (1984) Cell-surface glycosaminoglycans. Ann Rev Biochem 53: 847–869

    Article  PubMed  Google Scholar 

  26. Lasch HG, Huth K, Heene DL, Müller-Berghaus G, Horder MH, Janzarik H, Mittermayer C, Sandritter W (1971) Die Klinik der Verbrauchskoagulopathie. Dtsch Med Wochenschr 96: 715

    Article  PubMed  CAS  Google Scholar 

  27. Schrör K (1988) Eicosanoids and atherosclerosis. In: Hennerici M, Sitzer G, Weger HD (eds) Carotid artery plaques. Karger, Basel, pp 37–46

    Google Scholar 

  28. Forstrom RJ, Bartelt K, Blackshear PL et al. (1975) Formed element deposition onto filtering walls. Trans Am Soc Artif Intern Organs 21: 602–608

    PubMed  CAS  Google Scholar 

  29. Karino T, Goldsmith HL (1979) Adhesion of human platelets to collagen on the walls distal to a tubular expansion. Microvasc Res 17: 238–262

    Article  PubMed  CAS  Google Scholar 

  30. Richardson PD (1973) Effect of blood flow velocity on growth rate of platelet thrombi. Nature 245: 103–104

    Article  PubMed  CAS  Google Scholar 

  31. Booyse FM, Hoveke TP, Kisieleski D, Rafelson ME (1972) Mechanism and control of platelet-platelet interaction. 1. Effects of inducers and inhibitors of aggregation. Microvasc Res 4: 179–198

    Article  Google Scholar 

  32. Schmid-Schónbein H (1989) Hämostasiologie 9 (2)

    Google Scholar 

  33. Ross R (1986) The pathogenesis of atherosclerosis — an update. N Engl J Med 314: 488–500

    Article  PubMed  CAS  Google Scholar 

  34. Zierler RE, Phillips DJ, Kirk WB, Primozich JF, Strandness DE (1987) Non-invasive assessment of normal carotid bifurcation hemodynamics with color flow ultrasound imaging. Ultrasound Med Biol 13: 471–476

    Article  PubMed  CAS  Google Scholar 

  35. Caro CG, FitzGerald JM, Schroter RC (1971) Arterial wall shear. Observation, correlation and proposal of shear dependent mass transfer mechanisms for atherogenesis. Proc R Soc Lond [Biol] 177: 109–159

    Article  CAS  Google Scholar 

  36. Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Cire Res 22: 165–197

    CAS  Google Scholar 

  37. Beguin Y, Lindhout T, Hemker HC (1988) The mode of action of heparin in plasma. Thromb Haemost 60: 457–460

    PubMed  CAS  Google Scholar 

  38. Schmid-Schönbein H, Wurzinger LJ (1988) Vortex transport phenomena of the carotid trifurcation: interaction between fluid-dynamic transport phenomena and hemostatic reactions. In: Hennerici M, Sitzer G, Weger HD (eds) Carotid artery plaques. Karger, Basel, pp 64–91

    Google Scholar 

  39. Wurzinger LJ (1988) Thrombogenese and Hämodynarcik Hämostasiologie 8: 173–182

    Google Scholar 

  40. Perkkiö J, Wurzinger LJ, Schmid-Schönbein H (1987) Plasma and platelet simming at t-junctions. Thromb Res 45: 517–526

    Article  PubMed  Google Scholar 

  41. Dintenfass L (1964) Rheologic approach to thrombosis and atherosclerosis. Angiology 15: 333–343

    Article  PubMed  CAS  Google Scholar 

  42. Schmid-Schönbein H (1977) Microrheology of erythrocytes and thrombocytes, blood viscosity and the distribution of blood flow in the microcirculation. In: Meessen H (ed) Microcirculation. Springer, Berlin Heidelberg New York, pp 289–384 (Handbuch der allgemeinen Pathologie, vol 3, pt 7 )

    Google Scholar 

  43. Petschek HE, Adams D, Kantrowitz AR (1968) Stagnation flow thrombus formation. Trans Am Soc Artif Intern Organs 14: 256–259

    PubMed  CAS  Google Scholar 

  44. Herbst K (1989) Arterielle Thrombose trotz hochdosierter Antikoagulation mit Heparin. Dissertationsschrift, Medizinische Fakultät der RWTH Aachen

    Google Scholar 

  45. Hartung HP, Hennerici M (1988) Role of macrophages in atherosclerosis. In: Hennerici M, Sitzer G, Weger HD (eds) Carotid artery plaques. Karger, Basel, pp 47–63

    Google Scholar 

  46. Gregg DE (1944) Changes in right and left coronary artery inflow with cardiac nerve stimulation. Am J Physiol 141: 382–384

    Google Scholar 

  47. Kajiya F, Tomonaga G, Tsujioka K, Ogasawara Y (1985) Evaluation of local blood flow velocity in proximal and distal coronary arteries by Laser Doppler Method. J Biomech Eng 107: 10–15

    Article  PubMed  CAS  Google Scholar 

  48. Rafflenbeul W, Lichtlen PR (1983) Quantitative coronary angiography: evidence of a sustained increase in vascular smooth muscle tone in coronary artery stenoses. Z Kardiol 72 [Suppl 3]: 87–91

    PubMed  Google Scholar 

  49. Schmid-Schönbein H (1990) Blood rheology and oxygen conductance from the alveoli to the mitochondria. In: Fleming JS (ed) Drugs and the delivery of oxygen to tissues. CRC, Boca Raton, pp 15–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmid-Schönbein, H. (1990). Synergetics of Fluid-Dynamic and Biochemical Catastrophe Reactions in Coronary Artery Thrombosis. In: Bleifeld, W., Hamm, C.W., Braunwald, E. (eds) Unstable Angina. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-61288-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-61288-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64778-9

  • Online ISBN: 978-3-642-61288-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics