Skip to main content

Geometric Effects on the Hemodynamic Environment of the Arterial Wall: A Basis for Geometric Risk Factors?

  • Conference paper
Fluid Dynamics as a Localizing Factor for Atherosclerosis

Abstract

We have proposed that some of the variability among individuals and populations in the location and rate of development of atherosclerosis is due to corresponding variations in the detailed geometry of susceptible arterial segments. The vascular geometry indirectly affects the atherogenic process by mediating the hemodynamic environment of the intima. Those geometric features which enhance atherogenic hemodynamic stresses can be regarded as “geometric risk factors”. Protocols have now been implemented to identify such factors; initial results suggest that, at the aortic bifurcation, two risk factors are branch angle variations and an offset flow divider tip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anyanwu E, Ditt-rich H, Jelesijevic V, Druen B, Krefting ER, Hohling H (1981) Coarctation of the aorta. A risk factor in children for the development of arteriosclerosis. Atherosclerosis 39: 367–381

    Article  PubMed  CAS  Google Scholar 

  • Fishman AP (chairman) (1981) Arteriosclerosis 1981. Report on the Working Group on Arteriosclerosis of the National Heart, Lung and Blood Institute, vol 1. NIH Publication No. 81–2034, p 30

    Google Scholar 

  • Friedman MH, Bargeron CB, Hutchins GM, Mark FF, Deters OJ (1980) Hemodynamic measurements in human arterial casts and their correlation with histology and luminal area. J Biomech Eng 102: 247–251

    Article  PubMed  CAS  Google Scholar 

  • Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF (1981) Correlation between intimai thickness and fluid shear in human arteries. Atherosclerosis 39: 425–436

    Article  PubMed  CAS  Google Scholar 

  • Friedman MH, O’Brien V, Ehrlich LW (1975) Calculations of pulsatile flow through a branch. Implications for the hemodynamics of atherogenesis. Circ Res 36: 277–285

    PubMed  CAS  Google Scholar 

  • Gessner FB (1973) Hemodynamic theories of atherogenesis. Circ Res 33: 259–266

    Google Scholar 

  • Gutstein WH, Schneck DJ (1967) In vitro boundary layer studies of blood flow in branched tubes. J Atheroscler Res 7: 295–299

    Article  PubMed  CAS  Google Scholar 

  • Hopkins PN, Williams RR (1981) A survey of 246 suggested coronary risk factors. Atherosclerosis 40: 1–52

    Article  PubMed  CAS  Google Scholar 

  • Houle S, Roach MR (1981) Flow studies in a rigid model of an aortorenal junction. Atherosclerosis 40: 231–244

    Article  PubMed  CAS  Google Scholar 

  • Kandarpa K, Davids N (1976) Analysis of the fluid dynamic effects on atherogenesis at branching sites. J Biomech 9: 735–741

    CAS  Google Scholar 

  • Lee J-S, Fung Y-C (1971) Flow in nonuniform small blood vessels. Microvasc Res 3: 272–287

    Article  PubMed  CAS  Google Scholar 

  • McGill HC, Jr (1978) In: Chandler AB, et al. (eds) The thrombotic process in atherogenesis. Plenum, New York, pp 357–358

    Google Scholar 

  • Mark FF, Bargeron CB, Deters OJ, Hutchins GM, Friedman MH (1981) Velocity measurements of pulsatile flow through a cast of an asymmetric human aortic bifurcation. In: Van Buskirk WC, Woo SL-Y (eds) 1981 Biomechanics Symposium. Am Soc Mech Engrs, New York, pp 47–50

    Google Scholar 

  • Morgan BE, Young DF (1974) An integral method for the analysis of flow in arterial stenoses. Bull Math Biol 36: 39

    PubMed  CAS  Google Scholar 

  • Nerem RM, Cornhill JF (1980) The role of fluid mechanics in atherogenesis. J Biomech Eng 102: 181–189

    Article  PubMed  CAS  Google Scholar 

  • O’Brien V, Ehrlich LW (1977) Pulsatile flow through stenosed arteries. In: Skalak R, Schultz AB (eds) 1977 Biomechanics Symposium. Amer Soc Mech Engrs, New York, pp 113–116

    Google Scholar 

  • Stehbens WE (1975) The role of hemodynamics in the pathogenesis of atherosclerosis. Progr Cardiovasc Dis 18: 89–193

    Article  CAS  Google Scholar 

  • Velican C (1978) Hemodynamic stresses and atherosclerosis. Rev Roum Med 16: 3–14

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedman, M.H., Deters, O.J., Mark, F.F., Bargeron, C.B., Hutchins, G.M. (1983). Geometric Effects on the Hemodynamic Environment of the Arterial Wall: A Basis for Geometric Risk Factors?. In: Schettler, G., Nerem, R.M., Schmid-Schönbein, H., Mörl, H., Diehm, C. (eds) Fluid Dynamics as a Localizing Factor for Atherosclerosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-69085-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-69085-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-69087-7

  • Online ISBN: 978-3-642-69085-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics