Skip to main content

Adenosine Phosphates

  • Chapter
Methods in Soil Biology
  • 1147 Accesses

Abstract

The adenine nucleotides AMP (adenosine 5’monophosphate), ADP (adenosine 5’diphosphate), and especially ATP (adenosine 5’triphosphate) serve as energy carriers that are generated during exergonic reactions and used to drive endergonic reactions. At the substrate-level, phosphorylation, and in the electron transport, chain oxidation reactions, supply the energy for the phosphorylation of AMP and ADP to ATP. The ratios of these three adenylates are a measure of the energy status of cells. As ATP is very sensitive to environmental factors and to phosphatases, it does not persist in soils in a free state. Assuming that the ATP content of all living cells is constant under standard conditions, it can be used as a measure for the biomass content of soils (Holm-Hansen and Booth 1966; Sparling and Eiland 1983). There is no general agreement about the correlation between the amount of ATP and the microbial biomass (Ausmus 1973; Karl 1980; Sparling and Eiland 1983). The ATP content of microorganisms can be widely divergent depending on their metabolic activity (Fairbanks et al. 1984). Jenkinson (1988) pointed out that ATP contents of different soils can only be compared if such parameters as water content and temperature are standardized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • Atkinson DE, Walton GM (1967) Adenosine triphosphate conservation in metabolic References regulation. Rat liver cleavage enzyme. J Biol Chem 242: 3239 – 3241

    CAS  Google Scholar 

  • Ausmus BS (1973) The use of ATP assay in terrestrial decomposition studies. Bull Ecol Res Comm 17: 223 – 234

    CAS  Google Scholar 

  • Bai QY, Zelles L, Scheunert I, Korte F (1988) A simple effective procedure for the determination of adenosine triphosphate in soils. Chemosphere 17: 2461 – 2470

    Article  CAS  Google Scholar 

  • Bai QY, Zelles L, Scheunert I, Korte F (1989) Determination of adenine nucleotides in soil by ion-paired reverse-phase high-performance liquid chromatography. J Microbiol Methods 9: 345 – 351

    Article  CAS  Google Scholar 

  • Brookes PC, Newcombe AD, Jenkinson DS (1987) Adenylate energy charge measure¬ments in soil. Soil Biol Biochem 19: 211 – 217

    Article  CAS  Google Scholar 

  • Brookes PC, Tate KR, Jenkinson DS (1983) The adenylate energy charge of the soil microbial biomass. Soil Biol Biochem 15: 9 – 16

    Article  CAS  Google Scholar 

  • Conklin AR, MacGregor AN (1972) Soil adenosine triphosphate: extraction recovery and half-life. Bull Environ Contam Toxicol 7: 296 – 300

    Article  CAS  Google Scholar 

  • Davis WM, White DC (1980) Fluorometric determination of adenosine nucleotide derivatives as measure of the microfouling, detrital and sedimentary microbial biomass and physiological status. Appl Env Microbial 40: 539 – 548

    CAS  Google Scholar 

  • Eiland F (1979) An improved method for determination of adenosine triphosphate (ATP) in soil. Soil Biol Biochem 11: 31 – 35

    Article  CAS  Google Scholar 

  • Fairbanks BC, Woods LE, Bryant RJ, Elliott ET, Cole CV, Coleman DC (1984) Limita-tions of ATP estimates of microbial biomass. Soil Biol Biochem 16:549-558 Holm-Hansen 0 (1973) The use of ATP determinations in ecological studies. Bull Ecol Res Comm (Stockholm) 17: 215 – 222

    Google Scholar 

  • Holm-Hansen O (1973) The use of ATP determinations in ecological studies. Bull Ecol Res Comm (Stockholm) 17:215–222

    CAS  Google Scholar 

  • Holm-Hansen 0, Booth CR (1966) The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol Oceanogr 11: 510 – 519

    Article  CAS  Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass, carbon and nitrogen in soils. In: Wilson JR (eds) Advances in nitrogen cycling in agricultural ecosystems. 1. Agricultural land. Soils. Nitrogen cycle. CAB International, Wallingford, pp 368 – 386

    Google Scholar 

  • Jenkinson DS, Oades JM (1979) A method for measuring adenosine triphosphate in soil. Soil Biol Biochem 11: 193 – 199

    Article  CAS  Google Scholar 

  • Karl DM (1980) Cellular nucleotide measurements and applications in microbial ecology. Microbiol Rev 44: 739 – 796

    CAS  Google Scholar 

  • Lee CC, Harris RF, Williams JDH, Armstrong DE, Syers JK (1971) Adenosine triphosphate in lake sediments: 1. Determination. Soil Sci Soc Am Proc 35: 82 – 86

    Article  CAS  Google Scholar 

  • Maire N (1984) Extraction de I’adenosine triphosphate dons les sots: une nouvelle methode de calcul des pertes en ATP. Soil Biol Biochem 16: 361 – 366

    Article  CAS  Google Scholar 

  • Martens R (1985) Estimation of the adenylate energy charge in unamended and amended agricultural soils. Soil Biol Biochem 17: 765 – 772

    Article  CAS  Google Scholar 

  • Paul EA, Johnson RL (1977) Microscopic counting and adenosine 5’-triphosphate measurement in determining microbial growth in soils. Appl Env Microbial 34: 263 – 269

    CAS  Google Scholar 

  • Rosacker LL, Kieft TL (1990) Biomass and adenylate energy charge of a grassland soil during drying. Soil Biol Biochem 22: 1121 – 1127

    Article  Google Scholar 

  • Sparling GP, Eiland F (1983) A comparison of methods for measuring ATP and microbial biomass in soils. Soil Biol Biochem 15: 227 – 229

    Article  CAS  Google Scholar 

  • Vaden VR, Webster JJ, Hampton GJ, Hall MS, Leach FR (1987) Comparison of meth-ods for extraction of ATP from soil. J Microbiol Methods 7: 211 – 217

    Article  CAS  Google Scholar 

  • Verstraete W, Van De Werf H, Kucnerowicz F, Ilaiwi M, Verstraeten LMJ, Vlassak K (1983) Specific measurement of soil microbial ATP. Soil Biol Biochem 15: 39 – 396

    Article  Google Scholar 

  • Verstraeten LMJ, De Coninck K, Vlassak K, Verstraete W, Van De Werf H, Iliawi M (1983) ATP content of soils estimated by two contrasting estimation methods. Soil Biol Biochem 15: 397 – 402

    Article  CAS  Google Scholar 

  • Webster JJ, Hampton GJ, Leach FR (1984) ATP in soil: a new extractant and extraction procedure. Soil Biol Biochem 16: 335 – 342

    Article  CAS  Google Scholar 

  • Zelles L, Scheunert I, Korte F (1985) ATP-measurements in soil: a combination between the TCA and NRB extraction methods. Chemosphere 14: 139 – 148

    Article  CAS  Google Scholar 

References

  • Bai QY, Zelles L, Scheunert I, Korte F (1989) Determination of adenine nucleotides in soil by ion-paired reverse-phase high-performance liquid chromotagraphy. J Microbiol Methods 9: 345 – 351

    Article  CAS  Google Scholar 

References

  • Brookes PC, Newcombe AD, Jenkinson DS (1987) Adenylate energy charge measurements in soil. Soil Biol Biochem 19: 211 – 217

    Article  CAS  Google Scholar 

  • Jenkinson DS, Davidson SA, Powlson DC (1979) Adenosine triphosphate and microbial biomass in soil. Soil Biol Biochem 11: 521 – 527

    Article  CAS  Google Scholar 

  • Jenkinson DS, Oades JM (1979) A method for measuring adenosine triphosphate in soil. Soil Biol Biochem 11:193–199

    Article  Google Scholar 

  • Lundin A (1990) Clinical applications of luminometric ATP Monitoring. BioOrbit, Stockholm

    Google Scholar 

  • Myhrman A, Lundin A, Thore A (1978) The analytical application of ATP Monitoring Reagent using firefly bioluminescence. LKB ApplicationNote 314

    Google Scholar 

  • Sparling JP, Einland F (1983) A comparison of methods for measuring ATP and microbial biomass in soils. Soil Biol Biochem 15: 227 – 229

    Article  CAS  Google Scholar 

  • Thore A (1979a) Technical aspects of the bioluminescent firefly luciferase assay of ATP. Sci Tools 26: 30 – 34

    CAS  Google Scholar 

  • Thore A (1979b) Bioluminescent assay: extraction of ATP from biological specimens. LKB, Turku, Findland

    Google Scholar 

References

  • Eiland F (1979) An improved method for determination of adenosine triphosphate (ATP) in soil. Soil Biol Biochem 11: 31 – 35

    Article  CAS  Google Scholar 

  • Lee CC, Harris RF, Williams JDH, Armstrong DE, Syers JK (1971) Adenosine triphosphate in lake sediments. I. Determination. Soil Sci Soc Am Proc 35: 82 – 86

    Article  CAS  Google Scholar 

  • Maire N (1982) Methode de mesure de l’adenosine triphosphate (ATP) dans les sols. Bull BGS 6: 88 – 94

    Google Scholar 

  • Maire N (1984) Extraction de l’adenosine triphosphate dans les sols: une nouvelle

    Article  CAS  Google Scholar 

  • Thore A (1979) Technical aspects of the bioluminescent firefly luciferase assay of ATP. Sci Tools 26: 30 – 34

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albers, B., Rackwitz, R., Raubuch, M., Zelles, L., Margesin, R., Schinner, F. (1996). Adenosine Phosphates. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds) Methods in Soil Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60966-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60966-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64633-1

  • Online ISBN: 978-3-642-60966-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics