Skip to main content

Chronobiology and Endocytobiology: Where do They Meet?

On the Evolution and Mechanisms of Eukaryotic Timekeeping

  • Conference paper
Eukaryotism and Symbiosis

Abstract

In the Proceedings of Endocytobiology III, I had the opportunity to outline some ideas about how the evolution of cellular clocks may have occurred concomitantly with the evolution of eukaryotic cells (Kippert 1987). I speculated whether internal timekeeping might have been the initial selective advantage that cellular clocks provided to an endocytobiotic consortium developing into the early eukaryotic cell-a hypothesis which constituted a link between the fields of chronobiology and endocytobiology. Since then, there have been exciting developments in both fields. Much of the progress made in chronobiological research is of significance in evolutionary terms and is more ore less related to the field of endocytobiology. Thus, for Endocytobiology VI it may be timely to review this progress. The aim of the present review is to present briefly those recent findings that may be of relevance to our understanding of the evolution of cellular clocks, and discuss what this may tell us about today’s oscillator mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson BD, Johnson KA, Dunlap JN (1994) Circadian clock locus frequency-protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci USA 91: 7683–7687

    Article  Google Scholar 

  • Anderson SL, Kay SA (1996) Illuminating the mechanism of the circadian clock in plants. Trends Plant Sci 1: 51–57

    Article  Google Scholar 

  • Atack JR, Broughton HB, Pollack SJ (1995) Inositol monophosphatase-a putative target for Li+ in the treatment of bipolar disorder. Trends Neurosci 18: 343–349

    Article  PubMed  CAS  Google Scholar 

  • Balzer I, Neuhaus-Steinmetz U, Hardeland R (1989a) Temperature-compensation in an ultradian rhythm of tyrosine aminotransferase activity in Euglena gracilis. Experientia 45: 476–477

    Article  PubMed  CAS  Google Scholar 

  • Balzer I, Neuhaus-Steinmetz U, Quentin E et al. (1989b) Concomitance of circadian and circa-4-hour ultradian rhythms in Euglena gracilis. J Interdiscipl Cycle Res 20: 15–24

    Google Scholar 

  • Barnes SA, McGrath RB, Chua NH (1997) Light signal transduction in plants. Trends Cell Biol 7: 21–26

    Article  PubMed  CAS  Google Scholar 

  • Bergman B, Gallon JR, Rai N, Stai LJ (1997) N2fixation by non-heterocystous cyanobac-teria. FEMS Microbiol Reviews 19: 139–186

    Article  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361: 315–325

    Article  PubMed  CAS  Google Scholar 

  • Bossier P, Goethals P, Rodrigues-Pousada C (1997) Constitutive floccualation in Sac-charomyces cerevisiae through overexpression of the GTSI gene, coding for a ‘GLO’-type Zn-finger containing protein. Yeast, in press

    Google Scholar 

  • Bult CJ, White O, Olsen GJ et al. (1996) Complete genome sequence of the methanogenic archaeon, Meihanococcus jannaschii. Science 273: 1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Carré IA, Kay SA (1996) Mechanisms of input and output in circadian transduction pathways. In: DP Verma, Signal Transduction in Plant Growth and Development. Springer, New York, pp 231–247

    Google Scholar 

  • Carré IA, Oster AS, Laval-Martin DL, Edmunds LN Jr (1989) Entrainment and phase-shifting of the circadian rhythm of cell division by light in cultures of the achlorophyl-lous ZC mutant of Euglena gracilis. Curr Microbiol 19: 223–229

    Article  Google Scholar 

  • Comolli J, Taylor W, Hastings JW (1994) An inhibitor of protein phosphorylation stops the circa-dian oscillator and blocks light-induced phase shifting in Gonyaulax. J Biol Rhythms 9: 13–26

    Article  PubMed  CAS  Google Scholar 

  • Comolli J, Taylor W, Rehman J, Hastings JW (1996) Inhibitors of serine/threonine phos-phoprotein phosphatases alter circadian properties in Gonyaulaxpolyedra. Plant Physiol 111: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Coté G, Lakin-Thomas PL, Brody S (1996) Membrane lipids and circadian rhythms in Neurospora crassa. In: T Vanden Driessche (ed) Membranes and Circadian Rhythms. Springer, New York, pp 13–46

    Google Scholar 

  • Dunlap JC (1996) Genetic and molecular analysis of circadian rhythms. Annu Rev Genet 30: 579–601

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC, Feldman JF (1988) On the role of protein synthesis in the circadian clock of Neurospora crassa. Proc Natl Acad Sci USA 85: 1096–1100

    Article  PubMed  CAS  Google Scholar 

  • D’Urso G, Nurse P (1995) Checkpoints in the cell cycle of fission yeast. Curr Opin Genet Dev 5: 12–16

    Article  PubMed  Google Scholar 

  • Edmunds LN Jr (1988) Cellular and Molecular Bases of Biological Clocks. Models and Mechanisms for Circadian Timekeeping. Springer, New York

    Google Scholar 

  • Edmunds LN Jr (1996) Cross-talk between clocks: regulation of cell division cycles by circadian oscillators. In: T Vanden Driessche, Membranes and Circadian Rhythms. Springer, New York, pp 95–124

    Google Scholar 

  • Edmunds LN Jr, Carré IA, Tamponnet C, Tong J (1992) The role of ions and second messengers in circadian clock functions. Chronobiol Intemat 9: 180–200

    Article  CAS  Google Scholar 

  • Ellis RJ (ed) (1996) The Chaperones. Academic Press

    Google Scholar 

  • Fleischman RD, Adams, MD, White, O et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influezaeRD. Science 269: 496–512

    Article  Google Scholar 

  • Gallon JR, Hashem MA, Chaplin AE (1991) Nitrogen fixation by Oscillatoriaspp. Under autotrophic and photoheterotrophic conditions. J Gen Microbiol 137: 31–39

    CAS  Google Scholar 

  • Goffeau A, Barr BG, Busse R et al. (1996) Life with 6000 genes. Science 274: 546–567

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129: 1061–1069

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1995) Tripping along the trail to the molecular mechanisms of biological clocks Trends Neurosci 18: 230–240

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1996) Are cycling gene products as internal zeitgebers no longer the Zeitgeist of chronobiologists? Neuron 17: 199–802

    Article  Google Scholar 

  • Hardeland R (1994) Periodic gene expression as an element of cellular oscillators? In: R Hardeland (ed) Cell Biological Problems in Chronobiology. University of Göttingen, Göttingen, pp 6–12

    Google Scholar 

  • Hasegawa K, Tsukahara Y, Shimamoto M et al. (1995) A mechanism regulating circadian changes in the resting membrane potential in Paramecium. Biol Rhythm Res 26: 398

    Article  Google Scholar 

  • Hayles J, Nurse P (1992) Genetics of the fission yeast Schizosaccharomyces pombe. Annu Rev Genet 26: 373–402

    Article  PubMed  CAS  Google Scholar 

  • Homma K, Hastings JW (1989a) Cell growth kinetics, division asymmetry and volume control at division in the marine dinoflagellate Gonyaulax polyedra: a model of circadian clock control of the cell cycle. J Cell Sci 92: 303–318

    PubMed  Google Scholar 

  • Homma K, Hastings JW (1989b) The S phase is discrete and is controlled by the circadian clock in the marine dinoflagellate Gonyaulax polyedra. Exp Cell Res 182: 635–644

    Article  PubMed  CAS  Google Scholar 

  • Huang T-C, Grobbelaar N (1995) The circadian clock of the prokaryote SynechococcusRF-1. Microbiology 141: 535–540

    Article  CAS  Google Scholar 

  • Huang T-C, Tu J, Chow T-J, Chen T-H (1990) Circadian rhythm of the prokaryote SynechococcusRF-1. Plant Physiol 92: 531–533

    Article  PubMed  CAS  Google Scholar 

  • Hunter T, Plowman GD (1997) The protein kinases of budding yeast: six score and more. TIBS 22: 18–22

    PubMed  CAS  Google Scholar 

  • Hwang S, Kawazoe R, Herrin DL (1996) Transcription of tufAand other chloroplast-encoded genes is controlled by a circadian clock in Chlamydomonas. Proc Natl Acad Sei USA 93: 996–1000

    Article  CAS  Google Scholar 

  • Iwasaki K, Liu DWC, Thomas JT (1995) Genes that control a temperature-compensated ultradian clocks in Caenorhabditis elegans. Proc Natl Acad Sei USA 92: 10317–10321

    Article  CAS  Google Scholar 

  • Jeon KW (1995) The large, free-living amoeba: wonderful cells for biological studies. J Eukaryot Microbiol 42: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Knight MR, Kondo T et al. (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269: 1863–1865

    Article  PubMed  CAS  Google Scholar 

  • Johnson CH, Golden SS, Ishiura M, Kondo T (1996) Circadian clocks in prokaryotes. Mol Microbiol 21: 5–11

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Sato S, Kotani H et al. (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystissp. strain PCC6803. II. Sequence of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    Article  PubMed  CAS  Google Scholar 

  • Kennelly PJ, Potts M (1996) Fancy meeting you here! A fresh look at ‘prokaryotic’ protein phosphorylation. J Bacteriol 178: 4759–4764

    PubMed  CAS  Google Scholar 

  • Kippert F (1987) Endocytobiotic coordination, intracellular calcium signaling, and the origin of endogenous rhythms. In: Lee JJ, Fredrick JF (eds) Endocytobiology III, Ann NY Acad Sei 503: 476–495

    Google Scholar 

  • Kippert F (1989) Circadian control of heat tolerance in stationary phase cultures of Schizosaccharomyces pombe. Arch Microbiol 151: 177–179

    Article  PubMed  CAS  Google Scholar 

  • Kippert F (1991) Essential clock proteins/circadian rhythms in prokaryotes-what is the evidence? Bot Acta 103: 2–4

    Google Scholar 

  • Kippert F (1992) Ultradian and circadian clocks-two sides of one coin? J Interdiscipl Cycle Res 23: 192–196

    Google Scholar 

  • Kippert F (1996a) An ultradian clock controls locomotor behaviour and cell division in isolated cells of Paramecium tetraurelia. J Cell Sei 108: 867–873

    Google Scholar 

  • Kippert F (1996b) The temperature-compensated clock of Tetrahymena: Oscillations in respiratory activity and cell division. Chronobiol Intern 13: 1–13

    Article  CAS  Google Scholar 

  • Kippert F (1996c) Long-term recordings of a novel circadian rhythm in Synechococcus RF-1 reveal an exact 24 hours period. Abstract # 253,1st Eur Phycol Congr Cologne, Germany

    Google Scholar 

  • Kippert F (1997a) Temperature-compensation of ultradian rhythms: a general homeostasis of period length identifies ultradian clocks as timekeeping devices. Submitted

    Google Scholar 

  • Kippert F (1997b) The ultradian clock of Schizosaccharomyces pombe shows a general homeostasis of period length under diverse growth conditions. Submitted

    Google Scholar 

  • Kippert F (1997c) Genetic variability of period length of the Schizosaccharomyces pombe ultradian clock: the case of a haploid organism. Submitted

    Google Scholar 

  • Kippert F (1997d) Activity of the weel + protein kinase is required for ultradian clock control over mitosis in Schizosaccharomyces pombe. In preparation

    Google Scholar 

  • Kippert F (1997e) Inositol monophosphatase is the target for the period lengthening effect of lithium on the ultradian clock of Schizosaccharomyces pombe. Submitted

    Google Scholar 

  • Kippert F, Lloyd D (1995) A temperature-compensated ultradian clock ticks in Schizosaccharomyces pombe. Microbiology 141: 883–890

    Article  PubMed  CAS  Google Scholar 

  • Kippert F, Lloyd D (1997a) Rhythms in respiration, fermentation, and medium acidification: outputs of an ultradian clock in fast growing Schizosaccharomyces pombe. Submitted

    CAS  Google Scholar 

  • Kippert F, Lloyd D (1997b) The ultradian clock of Schizosaccharomyces pombe: timing of cell cycle stages in fast growing cells. Submitted

    Google Scholar 

  • Kippert F, Ninnemann H, Engelmann W (1991) Photosynchronization of the circadian clock of Schizosaccharomyces pombe: Mitochondrial cytochrome bis an essential component. Curr Genet 19: 103–107

    Article  CAS  Google Scholar 

  • Kippert F, Diebold S, Feil K (1997) Lithium dramatically slows down the ultradian clock of Schizosaccharomyces pombe. Submitted

    Google Scholar 

  • Klemfuss H (1992) Rhythms and the pharmacology of lithiuni. Pharmacol Ther 56: 53–78

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Strayer CA, Kulkarni RD et al. (1993) Circadian rhythms in prokaryotes: lu-ciferase as a reporter gene of circadian gene expression in cyanobacteria. Proc Natl Acad Sci USA 90: 5672–5676

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS et al. (1994) Circadian clock mutants of cyanobacteria. Science 266: 1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Mori T, Lebedeva NV et al. (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275: 224–228

    Article  PubMed  CAS  Google Scholar 

  • Koumenis C, Nunez-Regueiro M, Raju U et al. (1995) Identification of three proteins in the eye of Aplysia, whose synthesis is altered by serotonin. J Biol Chem 270: 14619–14627

    Article  PubMed  CAS  Google Scholar 

  • Krucher NA, Roberts MH (1994) Identification of CDK-and cyclin-like proteins in the eye of Bulla gouldiana. JNeurobiol 25: 1200–1206

    Article  CAS  Google Scholar 

  • Kyriacou CP, Oldroyd M, Wood J, et al. (1990) Clock mutations alter developmental timing in Drosophila. Heredity 64: 395–401

    Article  PubMed  Google Scholar 

  • Kyriacou CP, Greenacre ML, Thackeray JR, Hall JC (1993) Genetic and molecular analysis of song rhythms in Drosophila. In: MW Young (ed) Molecular Genetics of Circadian Rhythms. Marcel Dekker, New York, pp 171–193

    Google Scholar 

  • Levine JD, Casey CI, Kalderon DD, Jackson, FR (1994) Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophilalearning mutant dunce. Neuron 13: 967–974

    Article  PubMed  CAS  Google Scholar 

  • Lew J, Wang JH (1995) Neuronal cdc2-like kinase. TIBS 20: 33–37

    PubMed  CAS  Google Scholar 

  • Lewandowski MH, Domoslawski J, Balzer I et al. (1995) Demonstration of temperature compensation for ultradian rhythms of dark motility in Euglena gracilis. In: R Hardeland (ed) Cellular Rhythms and Indoleamines. University of Göttingen, Göttingen, pp 59–70

    Google Scholar 

  • Lloyd D, Edwards SW, Fry JC (1982) Temperature-compensated oscillations in respiration and cellular protein content in synchronous cultures of Acanthamoeba castellanii. Proc Natl Acad Sci USA 79: 3785–3788

    Article  PubMed  CAS  Google Scholar 

  • Loros JJ (1995) The molecular basis of the Neurosporaclock. Semin Neurosci 7: 3–13

    Article  CAS  Google Scholar 

  • Michel U, Hardeland R (1985) On the chronobiology of Tetrahymena. III. Temperature compensation and temperature dependence in the ultradian oscillation of tyrosine aminotransferase. J interdiscipl Cycle Res 16: 17–23

    CAS  Google Scholar 

  • Mitsui A, Kumazawa S, Takahashi A et al. (1986) Strategy by which nitrogen-fixing cyanobacteria grow photoautotrophically. Nature 323: 720–722

    Article  CAS  Google Scholar 

  • Mitsui A, Suda S, Hanagata N (1993) Cell cycle events at different temperatures in aerobic nitrogen-fixing arine unicellular cyanobacterium Synechococcussp. strain Miami BG 043511. J Mar Biotechnol 1: 89–91

    Google Scholar 

  • Miwa I, Yajima H (1995) Correlation of circadian rhythms with the length of immaturity in Paramecium bursaria. Zool Sci 12: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Binder B, Johnson CH (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 h. Proc Natl Acad Sci USA 93: 10183–10188

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (1995) Evolution of the cell cycle. Phil Trans R Soc Lond B 349: 271–281

    Article  CAS  Google Scholar 

  • Nigg EA (1995) Cyclin-dependent protein kinase: key regulators of the eukaryotic cell cycle. BioEssays 17: 471–480

    Article  PubMed  CAS  Google Scholar 

  • Pelech SL (1996) Signalling pathways: kinase connections on the cellular intranet. Curr Biol 6: 551–554

    Article  PubMed  CAS  Google Scholar 

  • Pennisi E (1996) Expanding the eukaryote’s cast of chaperones. Science 274: 1613–1614

    Article  PubMed  CAS  Google Scholar 

  • Prosser RA, Gillette MU (1991) Cyclic changes in cAMP concentration and phosphodiesterase activity in a mammalian circadian clock studied in vitro. Brain Res 568: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Prosser RA, Gillette MU (1991) Cyclic changes in cAMP concentration and phosphodiesterase activity in a mammalian circadian clock studied in vitro. Brain Res 568: 185–192

    Article  PubMed  CAS  Google Scholar 

  • Rikin A (1992) Circadian rhythm of heat resistance in cotton seedlings, synthesis of heat-shock proteins. Eur J Cell Biol 59: 160–165

    PubMed  CAS  Google Scholar 

  • Roberts MH, Bedian V, Chen Y (1989) Kinase inhibition lengthens the period of the circadian pacemaker in the eye of Bulla gouldiana. Brain Res 504: 211–215

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T (1996) Complex circadian system of Gonyaulax. Physiol Plant 97: 733–737

    Article  Google Scholar 

  • Rojek R, Harms C, Hebeler M, Grimme LH (1994) Cyclic variations of photosynthetic activity under nitrogen-fixing conditions in SynechococcusRF- 1. Arch Microbiol 162: 80–84

    CAS  Google Scholar 

  • Sassone-Corsi P (1996) Circadian rhythms-same clock, different works. Nature 384: 613–614

    Article  PubMed  CAS  Google Scholar 

  • Sauman I, Reppert SM (1996) Circadian clock neurons in the silkmoth Anteraea perny -novel mechanisms of period protein regulation. Neuron 17: 889–900

    Article  PubMed  CAS  Google Scholar 

  • Scmidt I, Balzer I (1995) Light perception and circadian rhythms in Euglena gracilis. In: R Hardeland (ed) Cellular Rhythms and Indoleamines. University of Göttingen, pp 71–78

    Google Scholar 

  • Sweeney BM, Haxo FT (1961) Persistence of a photosynthetic rhythm in enucleated Acetabularia. Science 134: 1361–1363

    Article  PubMed  CAS  Google Scholar 

  • Tokushima H, Okamoto K-I, Miwa I, Nakaoka Y (1994) Correlation between circadian periods and cellular activities in Paramecium bursaria. J Comp Physiol A 175: 767–772

    Article  PubMed  CAS  Google Scholar 

  • Van Dolah FM, Leighfield TA, Sandel HD, Hsi CK (1995) Cell division in the dinoflagel-late Gambierdiscus toxicusis phased to the diumal cycle and accompanied by activation of the cell cycle regulatory protein, CDC2 kinase. J Phycol 31: 395–400

    Article  Google Scholar 

  • Waskiewicz AJ, Cooper JA (1995) Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol 7: 798–805

    Article  PubMed  CAS  Google Scholar 

  • Weisman R, Creanor J, Fantes P (1996) A multicopy suppresor of a cell cycle defect encodes a heat shock-inducible 40 kDa cyclophilin-like protein. EMBO J 15: 447–456

    PubMed  CAS  Google Scholar 

  • Wong A, Boutis P, Hekimi, S (1995) Mutations of the clk-1gene of Caenorhabditis ele-gansaffect developmental and behavioral timing. Genetics 139: 1247–1259

    PubMed  CAS  Google Scholar 

  • Woodgett JR, Kyriakis JM, Avruch J et al. (1996) Reconstitution of novel signalling cascades responding to cellular stresses. Phil Trans R Soc Lond B 151: 135–142

    Article  Google Scholar 

  • Yaguchi S-I, Mitsui K, Kabawata K-I et al. (1996) The pleiotropic effect of the GTS1gene product on heat tolerance, sporulatiofi and the life span of Saccharomyces cerevisiae. Biochem Biophys Res Commun 218: 234–237

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C-C (1996) Bacterial signalling involving eukaryotic type protein kinases. Mol Microbiol 20: 915

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kippert, F. (1997). Chronobiology and Endocytobiology: Where do They Meet?. In: Schenk, H.E.A., Herrmann, R.G., Jeon, K.W., Müller, N.E., Schwemmler, W. (eds) Eukaryotism and Symbiosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60885-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60885-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64598-3

  • Online ISBN: 978-3-642-60885-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics