Skip to main content

Cholinerge Behandlungsstrategien

  • Conference paper
Alzheimer Demenz

Zusammenfassung

Seit Ende der 70er Jahre drei unabhängige Gruppen übereinstimmend eine dramatische Reduktion der Cholinazetyltransferase-Aktivität (CAT) im Hirngewebe der Patienten mit Alzheimer Krankheit beschrieben (Bowen et al. , 1976; Perry et al. , 1977; Davies und Malaney 1976), wurde die „cholinerge Hypothese“ der kognitiven Defizite bei der Alzheimer Krankheit immer weiter untermauert und erweitert (Whitehouse et al. , 1982; Weinstock, 1995). Post-mortem ist die CAT um bis zu 90% der Kontrollwerte verringert (Gsell et al. , 1993). Im Liquor cerebrospinalis findet sich eine Minderung des Gehaltes an Azetylcholin (Ach) (Frölich et al. , 1998; Toghi et al. , 1996). Das Ausmaß der cholinergen Defizite im Gehirn korreliert gut mit dem Schweregrad der Demenz und mit dem Ausmaß der Ablagerung von Amyloidplaques und neurofibrillären Bündeln (Perry et al. , 1985; Wilcock et al. , 1990; Bierer et al. , 1995). Die relative Spezifität der cholinergen Neurotransmitterdegeneration ist ein Beleg dafür, daß es wahrscheinlich zunächst zu einer Funktionsstörung im Metabolismus des präsynaptischen Neurons kommt, ehe dann - möglicherweise als Folge dieser Funktionsstörung - eine synaptische Degeneration eintritt. Ob ein Defizit in bestimmten neurotrophen Faktoren (z. B. NGF) Ursache der Funktionsstörung spezifischer Neurotransmitter-synthetisierender Neurone darstellt, ist bisher nicht ausreichend belegt. Für die pathogenetische Relevanz der Neurotransmitter-Hypothese spricht, daß eine Störung in der cholinergen Neurotransmission vermutlich zur Amyloidablagerung beitragen kann (Nitsch et al. , 1992). Ebenso ergeben sich Verbindungen zur Glukose-Stoffwechsel-Hypothese über die Energieabhängigkeit der Neurotransmission und die spezielle Präkursorfunktion der Glukose für den Neurotransmitter Azetylcholin (Gibson et al. , 1978; Hoyer, 1993) sowie zu neurotrophen Wirkungen über eine gesteigerte Genexpression durch cholinerge Neurotransmitteraktivierung (van der Kammer et al. , 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akaike A, Tamura Y, Yokota T et al. (1994) Nicotine-induced protection of cultured cortical neurons, against N-methyl-D-aspartate receptor mediated glutomat cytotoxity Brain Res 644: 181–187

    Article  PubMed  CAS  Google Scholar 

  • Albert SM, Sann M, Marder K et al. (1997) Participation in clinical trials and long-term outcomes in Alzheimer’s disease. Neurology 49: 39–43

    Google Scholar 

  • Amaducci L, Angst J, Bech P et al. (1990) Consensus Conference on the Methodology of Clinical Trials of „Nootropics“, Munich, June 1989. Report of the Consensus Comnittee. Pharmacopsychiatry 23:171–175

    Article  PubMed  CAS  Google Scholar 

  • Anand R, Hartman R, Messina J et al. (1998) Long-term treatment with rivastigmine continues to provide benefits for up to one year. Fifth Int Geneva/Springfield Symposium on Advances in Alzheimer Therapy, Geneva 1998, Abstr 18

    Google Scholar 

  • Anand R, Hartman RD, Hayes PE (1996) An overview of the development of SDZ ENA 713, a brain selective Cholinesterase inhibitor disease. In: Becker R, Giacobini E (eds) Alzheimer Disease: From Molecular Biology to Therapy. Birkhäuser, Boston, pp 239–243

    Google Scholar 

  • Anand K, Gharabawi G (1996) Clinical development of Exelon (ENA-713): the ADENA program. J Drug Dev Clin Practice 8: 9–14

    Google Scholar 

  • Bareggi SR, Giacobini E (1978) Aectylcholinesterase activity in ventricular and cisternal CSF of dogs. J Neurosci Res 3: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Becker R, Colliver JK, Markwell SJ et al. (1996) Double-blind, placebo-controlled study of metrifonate, and acetylcholinesterase inhibitor for Alzheimer disease. Alz Dis Assoc Dis 1: 124—131

    Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S et al. (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64: 749—760

    PubMed  Google Scholar 

  • Bowen DM, Smith CB, White P, Davidson AN (1976) Neurotransmitter related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99: 459–496

    Article  PubMed  CAS  Google Scholar 

  • Brufani M, Filocamo L, Lappa S, Maggi A (1997) New acetylcholinesterase inhibitors. Drugs of the Future 22:397–410

    CAS  Google Scholar 

  • Colrain IM, Managan GL, Pellet OL, Bates TC (1992) Effects of post-learning smoking on memory consolidation. Psychopharmacology (Berl) 108: 448—451

    Article  Google Scholar 

  • Cummings MD, Cyrus PA, Bieber F et al. Metrifonate treatment of the cognitive deficits in Alzheimer’s Disease. Neurology 50: 1214-1221

    Google Scholar 

  • Davies P, Maloney AJF (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1: 1403

    Article  Google Scholar 

  • Elble R, Giacobini E, Scarsella GF (1987) Cholinesterase in cerebrospinal fluid. Neurology 44: 403–407

    CAS  Google Scholar 

  • Enz A, Armstutz R, Boddeke H et al. (1993) Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog Brain Res 98: 431–438

    Article  PubMed  CAS  Google Scholar 

  • Farlow M, Gracon SI, Hershey LA et al. (1992) Controlled trial of tacrine in Alzheimer’s disease. J Am Med Ass 269: 2521–2529

    Google Scholar 

  • Farlow MR, Lahiri DK, Poirier J et al. (1998) Treatment outcome of tacrine therapy depends on apolipoprotein genotype and gender of the subjects with Alzheimer’s disease. Neurology 50: 669–679

    PubMed  CAS  Google Scholar 

  • Frölich L, Dirr A, Götz ME et al. (1998) Acetylcholine in human CSF: methodological considerations and levels in dementia of Alzheimer type. J Neural Transm 105: 961–973

    Article  PubMed  Google Scholar 

  • Galli A, Mori F, Benini L, Cacciarelli N (1994) Acetylcholinesterase protection and the antidiisopropylfluorophosphate efficacy of donepezil. Eur J Pharmacol 270: 189–191

    PubMed  CAS  Google Scholar 

  • Geula C, Mesulam MM (1994) Cholinergic systems and related neuropathological predilection patterns in Alzheimer disease. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer’s Disease. Raven, New York, pp 263–291

    Google Scholar 

  • Giacobini E, Cuadra G (1994) Second and third generation Cholinesterase inhibitors: from preclinical studies to clinical efficacy. In: Giacobini E, Becker R (eds) Alzheimer Disease: Therapeutic Strategies. Birkhäuser, Boston, pp 155–171

    Google Scholar 

  • Giacobini E (1996) Cholinesterase inhibitors do more than inhibit Cholinesterase. In: Becker K, Giacobini E (eds) Alzheimer Disease: From Molecular Biologie to Therapie. Birkhäuser, Boston, pp 187–204

    Google Scholar 

  • Giacobini E (1997) From molecular strueture to Alzheimer therapy. Jpn J Pharmacol 7: 225–241

    Article  Google Scholar 

  • Giacobini E, Michel JP (1998) Cholinesterase inhibitors for Alzheimer disease therapy: Past, present and future. Int J Ger Psychopharmacology 1: 164–170

    CAS  Google Scholar 

  • Gibson GE, Blass JP, Jendon DJ (1978) Measurement of acetylcholine turnover with glucose used as a precursor: evidence for compartmentation of glucose metabolism in brain. J Neurochem 30: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Fine A, Dawbarn D, Wilcock GK, Chao MV (1989) Nerve growth factor receptor mRNA in human brain: normal levels in basal forbrain in Alzheimer’s disease. Mol Brain Res 5: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve growth factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain und levels in Alzheimer’s disease. Brain Res 387: 85–92

    PubMed  CAS  Google Scholar 

  • Gracon S, Goodrich J, Fayad R (1998) A prospective study on a once daily formulation of tacrine in patients with and without Apolipoprotein E-allele. Fifth Int Geneva/Springfield Symposium on Advances in Alzheimer Therapy, Geneva 1998, Abstr 47

    Google Scholar 

  • Gsell W, Moll G, Sofie E, Riederer P (1993) Cholinergic and monoaminergic neurotransmitter systems in patients with Alzheimer’s disease and senile dementia of the Alzheimer type: A critical evaluation. In: Maurer K (ed) Dementias, Neurochemistry, Neuropathology, Neuroimaging, Neuropsychology und Genetics. Vieweg Verlag, Braunschweig, pp 25–51

    Google Scholar 

  • Hefli F, Schneider LS (1989) Rationale for the planned clinical trials with nerve growth factor in Alzheimer’s disease. Psychiatr Dev 7: 297–315

    Google Scholar 

  • Hefti F, Weiner WJ (1986) Nerve growth factor and Alzheimer’s disease. Ann Neurol 10: 275–281

    Article  Google Scholar 

  • Heilbronn E (1961) Inhibition of cholinesterases by tetrahydroaminoacridine. Acta Chem Scand 15: 1386–1390

    Article  CAS  Google Scholar 

  • Hellweg R (1992) „Nerve growth factor“(NGF): pathophysiologische Bedeutung und mögliche therapeutische Konsequenzen. Nervenarzt 63: 52–56

    PubMed  CAS  Google Scholar 

  • Higgins GA, Mufson EJ (1989) NGF receptor gene expression is decreased in the nucleus basalis in Alzheimer’s disease. Exp Neurol 106: 222–236

    Article  PubMed  CAS  Google Scholar 

  • Hinz VC, Kolb J, Schmidt B (1998) Effects of subchronic administration of metrifonate on cholinergic neurotransmission in rats. Neurochem Res 23: 933–940

    Article  Google Scholar 

  • Hinz VC, Grewig S, Schmidt BH (1996) Metrifonate induces Cholinesterase inhibition exclusively via slow release of dichlorvos. Neurechem Res 21: 331–337

    Article  CAS  Google Scholar 

  • Hohnstedt B, Nordgren I, Sandoz M, Sundwall A (1978) Metrifonate; summary of toxicological and pharmacological information available. Arch Toxicol 41: 3–29

    Article  Google Scholar 

  • Hoyer S (1993) Editor’s note for debate. Sporadic dementia of Alzheimer type: role of amyloid in etiology is challenged. J Neurol Transm [P-D Sect] 6: 159–165

    Article  CAS  Google Scholar 

  • Jelic V, Amberia K, Almkvist O et al. (1998) Long-term tacrine treatment slows the increase of theta power in EEG of mild Alzheimer patients compared to untreated controls. Fifth Int Geneva/Springfield Symposium on Advances in Alzheimer Therapy, Geneva, Abstr 147

    Google Scholar 

  • Jones GMM, Sahakian BJ, Levy R et al. (1992) Effects of acute subeutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology 108: 485–494

    Article  PubMed  CAS  Google Scholar 

  • Kihara T, Shimohama S, Sawada H et al. (1997) Nicotinic receptor Stimulation protects neurons against ßamyloid toxicity. Ann Neurol 42: 159–163

    Article  PubMed  CAS  Google Scholar 

  • Knapp MJ, Knomann DS, Solomon PR (1994) A 30 week randomized controlled trial of high-dose tacrine patients with Alzheimer’s disease. J Am med Ass 271: 985–991

    Article  CAS  Google Scholar 

  • Knopman D, Schneider L, Davis MD et al. (1996) Long-term tacrine (Cognex) treatment: Effects on nursing home placement and mortality. Neurology 47: 166–177

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor -35 years later. Science 237: 1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Levin ED(1992) Nicotinic systems and cognitive function. Psychopharmacology 108: 417–431

    Article  PubMed  CAS  Google Scholar 

  • Marquis JK (199) Pharmacological significance of acetylcholinesterase inhibition by tetrahydroaminoacridine. Biochem Pharmacol 40: 1071-1076

    Google Scholar 

  • McGehee DS, Haeth MJS, Gelber S et al. (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269: 1692–1696

    Article  PubMed  CAS  Google Scholar 

  • McKeith IG, Dubois B, Collins O et al. (1998) Efficacy and safety of metrifonate in Alzheimer’s disease. Fifth Int Geneva/Springfield Symposium on Advances in Alzheimer’s Therapy Geneva, Abstr 155

    Google Scholar 

  • Mori F, Lai CC, Fusi F, Giacobini E (1995) Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. Neurol Rep 6: 633–636

    CAS  Google Scholar 

  • Morris JC, Cyrus PA Orazem J et al. (1998) Metrifonate benefits cognitive, behavioural, and global function in patients with Alzheimer’s disease. Neurology 50: 1222–1230

    PubMed  CAS  Google Scholar 

  • Morris J, Cyrus P, Orazem J et al. (1997) Metrifonate: potential therapy for Alzheimer’s disease. Amer Soc Neurol Meeting, Boston, Abstr 155

    Google Scholar 

  • Nakamura S, Kawashima S, Nakano S et al. (1990) Subcellular distribution of acetylcholinesterase in Alzheimer’s disease; abnormal localization and solubilization. J Neural Transm 30: 13–13

    CAS  Google Scholar 

  • Nakamura S, Yukawa M, Mimori Y (1995) The effect of acetylcholinesterase inhibitors on acetylcholinesterase in senile plaques normal human or rat brain, human erythrocyte or rat skeletal muscle, In: Hanin I et al. (eds) Alzheimer’s and Parkinson’s Diseases. Plenum Press, New York, pp 283–290

    Google Scholar 

  • Nitsch RM, Slack BE, Wurtman RJ, Growdon JH (1992b) Release of Alzheimer amyloid precursor derivatives stimulated by activation of muscarinic acetylcholine receptors. Science 258: 304–307

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Winblad B (1986) Reduced Number of [3H] nicotine and [3H] acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72: 115–119

    Article  PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P et al. (1995) Kinetic analysis of regional (S) (-) llC-nicotine binding in normal and Alzheimer brains: in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9: 21–27

    Article  PubMed  CAS  Google Scholar 

  • Pacheo G, Palacios-Esquivel R, Moss DE (1995) Cholinesterase inhibitors proposed for treating dementia in Alzheimer’s disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase. J Pharmaco Exp Ther 274: 767–770

    Google Scholar 

  • Patocka J, Bajgar J, Bielavsky J, Fusek J (1976) Kinetice of inhibition of cholinesterases by 1,2,3,4-tetrahydro-9-aminoacridine in vitro. Coli Czechoslov Chem Commun 41: 816–824

    CAS  Google Scholar 

  • Perry EK, Tomlinson BF, Blessed G, Bergmann K, Gibson PH, Perry RH (1978) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Brit J Med 2: 1457–1459

    Article  CAS  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of contral cholinergic deficits in senile dememtia. Lancet 1: 189

    Article  PubMed  CAS  Google Scholar 

  • Perry EK, Curtis M, Pick DI et al. (1985) Cholinergic correlates of congnitive impairment in Parkinson’s disease: comparison with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48: 413–421

    Article  PubMed  CAS  Google Scholar 

  • Pettigrew LC, Bieber F, Lettieri J et al. (1978) A study of the pharmacokinetics, pharmacodynamics and safety of metrifonate in Alzheimer’s disease patients. J Clin Pharmacol

    Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G(1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382: 255–257

    Article  PubMed  CAS  Google Scholar 

  • Rainer M, Mark TH, Haushofer A (1989) Galantamine hydrobromide in the treatment of senile dementia of Alzheimer’s type. In: Kewitz et al (eds) Pharmacological Interventions on Central Mechanisms in senile dementia. W Zuckschwerdt Verlag, München

    Google Scholar 

  • Rogers SL, Farlow MR, Doody SR et al. (1998) A 24-week double-blind placebo controlled trial of donepezil in patients with AD. Neurology 50: 136–145

    PubMed  CAS  Google Scholar 

  • Rogers SL, Friedhoff T (1996) The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US rnulticentre, randomized, double-blind, placebo-controlled trial. Dementia 7: 293–230

    PubMed  CAS  Google Scholar 

  • Rogers SL, Friedhoff L (1998) Long-term efficacy and safety of donepezil in the treatment of Alzheimer’s disease. Eur Neuropsychopharmacol 8: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Rogers SL, Yamanishi Y, Yamatsu K (1991)Donepezil - The pharmacology of a piperidine Cholinesterase inhibitor. In: Becker RE, Giacobini E (eds) Cholinergic Basis for Alzheimer Therapy. Birkhäuser, Boston, pp 314–320

    Google Scholar 

  • Rusted JF, Warburton DM (1992) Facilitation of memory by post trial administration of nicotine: evidence for an attentional explanation. Psychopharmacology 108: 452–455

    Article  PubMed  CAS  Google Scholar 

  • Rusted J, Graupner L, O’Connel C, Nicholls C (1994) Does nicotine improve cognitive function? Psychopharmacology 115: 547–549

    Article  PubMed  CAS  Google Scholar 

  • Salmon AR, Marcinowski KJ, Zagorski M (1996) Nicotine inhibits amyloid formation by the ß-peptide. Biochemistry 5: 13568–13578

    Article  Google Scholar 

  • Scarsella G, Toschi G, Bareggi SR et al. (1979) Molecular forms of Cholinesterase in cerebrospinal fluid, blood plasma and brain tissue of the beagle dog. J Neurosci Res 4: 19–24

    Article  PubMed  CAS  Google Scholar 

  • Schmidt BH, van der Stay FJ (1998) Mixed acetyl-butyryl-cholinesterase inhibitors are as well tolerated as selective acetylcholinesterase inhibitors: a systematic comparison in rats. Int J Ger Psychopharmacology 1:134–139

    CAS  Google Scholar 

  • Schneider LS, Olin JT, Lyness SA, Chui HC (1997) Eligibility of Alzheimer’s disease patients for clinical trials. J Am Geriatr Soc 45: 921–928

    Google Scholar 

  • Shimohama S, Akaike A, Kimura J (1996) Nicotine induced protection against glutamate cytotoxicity: nicotinic cholinergic receptor-rnediated inhibition of nitric oxide formation. Ann NY Acad Sei 777: 356–361

    Article  CAS  Google Scholar 

  • Sjöberg RL, Svensson AL, Zhang X, Nordberg A (1998) Neuronal nicotinic receptor activation: a promising strategy for treatment of Alzheimer’s disease?Int J Ger Psychopharmacology 1: 145–149

    Google Scholar 

  • Stern Y, Albert M, Brandt J et al. (1994) Utility of extrapyramidal signs and psychosis as predictors of cognitive and functional decline, nursing home admission, and death in Alzheimer’s disease: prospective analyses from the Predictors Study. Neurology 44: 2300–2307

    PubMed  CAS  Google Scholar 

  • Summers WK, Viesselman JO, Margh GM, Candelora K (1981) Use of THIA in treatment of Alzheimer-like dementia: pilot study in twelve patients. Biol Psych 16: 145–153

    CAS  Google Scholar 

  • Thal LJ (?) Clinical trials in Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer’s disease. Raven, pp 431-444

    Google Scholar 

  • Thomsen T, Bickel U, Fischer JP, Kewitz H (1990) Stereoselectivity of Cholinesterase inhibition by galanthamine and tolerance in humans. Eur J Clin Pharmacol 39: 603–605

    Article  PubMed  CAS  Google Scholar 

  • Thomsen T, Kaden B, Fischer JP et al. (1991) Inhibition of acetylcholinesterase activity in human brain tissue and erythrocytes by galanthamine, physostigmine and tacrine. Eur J Clin Chem Clin Biochem 29: 487–492

    PubMed  CAS  Google Scholar 

  • Thomsen T, Zendeh B, Fischer JP, Kewitz H (1991) In vitro effects of various Cholinesterase inhibitors on acetyl-and butyrylcholinesterase of healthy volunteers. Bichem Pharmacol 41: 139–141

    Article  CAS  Google Scholar 

  • Tohgi H, Abe T, Kimura M, Saheki M, Takahashi S (1996) Cerebrospinal fluid acetylcholine and choline in vascular dementia of Binswanger and multiple small infaret types as compared with Alzheimer-type dementia. J Neurol Transm 103: 1211–1220

    Article  CAS  Google Scholar 

  • Von der Kammer H, Mayhaus M, Albrecht C et al. (1998) Muscarinic acetylcholine receptors activate expression of the Erg gne family of transcription factors. J Biol Chem 273: 10–17

    Google Scholar 

  • Watkins PB, Zimmermann HJ, Knapp MJ, Gracon SI (1994) Hepatoxic effects of tacrine administration in patients with Alzheimer’s disease. J Am Med Assoc 271: 992–998

    Article  CAS  Google Scholar 

  • Weinstock M (1995) The pharmacology of Alzheimer’s disease based on the cholinergic hypothesis: an update. Neurodegeneration 4: 349–356

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Martino AM, Antuono PG et al. (1986) Nicotine acetylcholine binding sites in Alzheimer’s disease. Brain Res 371: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse PJ, Price DL, Struble RG et al. (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215: 1237–1239

    Article  PubMed  CAS  Google Scholar 

  • Wileock GK, Esiri MM, Bowen DM, Smith CC (1990) Alzheimer’s disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sei 57: 407–417

    Article  Google Scholar 

  • Wilkinson D, Fulton B, Benfield P (1996) Galanthamine. Drugs and Aging 1: 60–66

    Google Scholar 

  • Wilkinson D (1997) Galanthamine hydrobromide - results of a group study. 8. Congress Int Psychoger, Jerusalem, Abstr 70

    Google Scholar 

  • Wonnacott S (1997) Presynaptic nicotine ACh receptors. Trend Neurosci 20: 92–98

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frölich, L., Hampel, H., Gorriz, C., Schramm, U. (1999). Cholinerge Behandlungsstrategien. In: Förstl, H., Bickel, H., Kurz, A. (eds) Alzheimer Demenz. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60228-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60228-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64313-2

  • Online ISBN: 978-3-642-60228-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics