Skip to main content
Log in

Metrifonate induces cholinesterase inhibition exclusively via slow release of dichlorvos

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Metrifonate, a long-acting cholinesterase (ChE) inhibitor with very low toxicity in warm-blooded animals, inhibits rat brain and serum cholinesterase (ChE) in vitro through its hydrolytic degradation product, dichlorvos. This conclusion is based on the finding that metrifonate-induced ChE inhibition showed the same pH dependence as its reported dehydrochlorination to dichlorvos. The ChE inhibition induced by dichlorvos was not pH dependent. It was mediated by a competitive drug interaction with the catalytic site of the enzyme, which led to irreversible inhibition within several minutes of incubation. After this time, addition of further substrate to the inhibited enzyme was not able to promote drug dissociation and hence enzyme reactivation. Similar characteristics of inhibition, i.e. interaction with the substrate binding site and time-dependent switch to non-competitive inhibition were observed with the reference compound, physostigmine. However, the physostigmine-induced inhibition of ChE could be readily reversed by further substrate addition. Another reference compound, tetrahydroaminoacridine (THA), also induced a reversible inhibition of rat brain and serum cholinesterase, but with a mechanism of action different from that of both dichlorvos and physostigmine in that enzyme inhibition occurred rapidly upon drug addition at an allosteric site on the enzyme surface. It is suggested that the unique slow release plus the slow inhibition of ChE by dichlorvos is responsible for the lower toxicity of metrifonate compared to that of directly acting ChE inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmstedt, B., Nordgren, I., Sandoz, M., and Sundwall, A. 1978. Metrifonate: Summary of toxicological and pharmacological information available. Arch. Toxicol. 41:3–29.

    Article  PubMed  CAS  Google Scholar 

  2. Lorenz, W., Henglein, A., and Schrader, G. 1955. The new insecticide 0,0-dimethyl 2,2,2-trichloro-1-hydroxy-ethyl-phosphonate. J. Am. Chem. Soc. 77:2554–2556.

    Article  CAS  Google Scholar 

  3. Lebrun, A., and Cerf, C. 1960. Note préliminaire sur la toxicité pour l'homme d'un insecticide organophosphoré (Dipterex®). Bull. Wld. Hlth. Org. 22:579–582.

    CAS  Google Scholar 

  4. Collerton, D. 1986. Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience 19:1–28.

    Article  PubMed  CAS  Google Scholar 

  5. Becker, R. E., and Giacobini, E. 1988. Mechanisms of cholinesterase inhibition in senile dementia of the Alzheimer type: clinical, pharmacological, and therapeutic aspects. Drug Dev. Res. 12:163–195.

    Article  CAS  Google Scholar 

  6. Giacobini, E. 1991. The second generation of cholinesterase inhibitors: pharmacological aspects. Pages 247–262,in Becker, R. and Giacobini, E. (eds.), Cholinergic Basis for Alzheimer Therapy, Birkhäuser, New York.

    Google Scholar 

  7. Reiner, E., Krauthacker, B., Simeon, V., and Skrinjaric-Spoliar, M. 1975. Mechanism of inhibition in vitro of mammalian acetylcholinesterase and cholinesterase in solutions of O,O-dimethyl 2,2,2-trichloro-1-hydroxyethyl phosphonate (Trichlorphon). Biochem. Pharmacol. 24:717–722.

    Article  PubMed  CAS  Google Scholar 

  8. Nordgren, I., Bergstrom, M., Holmstedt, B., and Sandoz, M. 1978. Transformation and action of metrifonate. Arch. Toxicol. 41:31–41.

    Article  PubMed  CAS  Google Scholar 

  9. Schneider, L. S. 1993. Clinical pharmacology of aminoacridines in Alzheimer's disease. Neurology 43:64–79.

    Google Scholar 

  10. Kumar, V., and Becker, R. E. 1989. Clinical pharmacology of tetrahydroaminoacridine: a possible therapeutic agent for Alzheimer's disease. Int. J. Clin. Pharmacol. Ther. Toxicol. 27:478–485.

    PubMed  CAS  Google Scholar 

  11. Suha, A., Beller, S. A., Overall, J. E., and Swann, A. C. 1985. Efficacy of oral physostigmine in primary degenerative dementia. A double blind study of response to different dose levels. Psychopharmacology 87:147–151.

    Article  Google Scholar 

  12. Becker, R. E., Giacobini, E., Elble, R., Mcllhany, M., and Sherman, K. 1988. Potential pharmacotherapy of Alzheimer's disease. A comparison of various forms of physostigmine administration. Acta Neurol. Scand. Suppl. 116:19–32.

    Article  CAS  Google Scholar 

  13. Siakotos, A. N., Filbert, M., and Hester, R. 1969. A specific radioisotopic assay for acetylcholinesterase and pseudocholinesterase in brain and plasma. Biochem. Med. 3:1–12.

    Article  CAS  Google Scholar 

  14. Ellman, G. L., Courtney, K. D., Andres, V. Jr., and Featherstone, R. M. 1961. A new, rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Article  PubMed  CAS  Google Scholar 

  15. Coyle, J. T., Price, D. L. and DeLong, M. R. 1983. Alzheimer's disease: A disorder of cortical cholinergic innervation. Science 219:1184–1190.

    Article  PubMed  CAS  Google Scholar 

  16. Giacobini, E. 1990. The cholinergic system in Alzheimer's disease. Pages 321–332,in Aquillonius, S. S. and Gillberg, P. G. (eds.), Progress in Brain Research, Elsevier, Amsterdam.

    Google Scholar 

  17. Giacobini, E. 1990. Cholinergic receptors in human brain: Effects of aging and Alzheimer's disease. J. Neurosci. Res. 27:548–560.

    Article  PubMed  CAS  Google Scholar 

  18. Bierer, L. M., Haroutunian, V., Gabriel, S., Knott, P. J., Carlin, L. S., Purohit, D. P., Perl, D. P., Schmeidler, J., Kanof, P., and Davis, K. 1995. Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits. J. Neurochem. 64:749–760.

    Article  PubMed  CAS  Google Scholar 

  19. Hasselmo, M. E., and Bower, J. M. 1993. Acetylcholine and memory. Trends Neurosci. 16:218–222.

    Article  PubMed  CAS  Google Scholar 

  20. Mohs, R. C., and Davis, K. L. 1987. The experimental pharmacology of Alzheimer's disease and related dementias. Pages 921–928,in Meltzer, H. Y. (ed.), Psychopharmacology: The third generation of progress, Raven Press, New York.

    Google Scholar 

  21. Giacobini, E. 1987. Modulation of brain acetylcholine levels with cholinesterase inhibitors as a treatment of Alzheimer's disease. Keio J. Med. 36:381–391.

    PubMed  CAS  Google Scholar 

  22. Jaen, J. C., and Davis, R. E. 1993. Cholinergic therapies for Alzheimer's disease: acetylcholinesterase inhibitors of current clinical interest. Curr. Opin. Invest. Drugs 2:363–377.

    Google Scholar 

  23. Metcalf, R. L., Fukuto, R. B., and March, R. B. 1959. Toxic action of dipterex® and DDVP in the house fly. J. Econ. Entomol. 52: 44–49.

    CAS  Google Scholar 

  24. Dawson, R. M. 1990. Reversibility of the inhibition of acetylcholinesterase by tacrine. Neurosci. Lett. 118:85–87.

    Article  PubMed  CAS  Google Scholar 

  25. Aldridge, W. N. 1980. Pages 115–125,in Sandler, M. (ed.), Enzyme inhibitors as drugs, Macmillan Press, London.

    Google Scholar 

  26. Main, A. R. 1979. Mode of action of anticholinesterases. Pharmacol. Ther. 6:579–628.

    Article  CAS  Google Scholar 

  27. Galli, A., Mori, F., Gori, I., and Lucherini, M. 1992. In vitro protection of acetylcholinesterase and butyrylcholinesterase by tetrahydroaminoacridine: comparison with physostigmine. Biochem. Pharmacol. 43:2427–2433.

    Article  PubMed  CAS  Google Scholar 

  28. Taylor, P., and Insel, P. A. 1990. Molecular basis of drug action. Pages 103–200,in Pratt, W. B. and Taylor, P. (eds.), Principles of drug action: the basis of pharmacology, Churchill Livingston Inc., New York.

    Google Scholar 

  29. Green, A. L. 1983. A theoretical kinetic analysis of the protective action exerted by eserine and other carbamate anticholinesterases against poisoning by organophosphorus compounds. Biochem. Parmacol. 32:1717–1722.

    Article  CAS  Google Scholar 

  30. Wu, C. S. C., and Yang, J. T. 1989. Tacrine protection of acetylcholinesterase from inactivation by diisopropylfluorophosphate: a circular dichroism study. Mol. Pharmacol. 35:85–92.

    PubMed  CAS  Google Scholar 

  31. Patocka, J., Bajgar, J., Bielavsky, J., and Fusek, J. 1976. Kinetics of inhibition of cholinesterases by 1,2,3,4-tetrahydro-9-aminoacridine in vitro. Collection Czechoslov. Chem. Commun. 41:816–824.

    CAS  Google Scholar 

  32. Nishioka, T., Kitamura, K., Fujita, T., and Nakajima, M. 1976. Kinetic constants for the inhibition of acetylcholinesterase by phenyl carbamates. Pest. Biochem. Physiol. 6:320–337.

    Article  CAS  Google Scholar 

  33. Friboulet, A., Rieger, F., Goudou, D., Amitai, G., and Taylor, P. 1990. Interaction of an organophosphate with a peripheral site on acetylcholinesterase. Biochemistry 29:914–920.

    Article  PubMed  CAS  Google Scholar 

  34. Michaelson, S., and Gray, P. J. 1991. A second site of action of soman on acetylcholinesterase. Biochem. Pharmacol. 42:2040–2043.

    Article  PubMed  CAS  Google Scholar 

  35. Winteringham, F. P. W., and Fowler, K. S. 1966. Substrate and dilution effects on the inhibition of acetylcholinesterases by carbamates. Biochem. J. 101:127–134.

    PubMed  CAS  Google Scholar 

  36. Villén, T. 1990. Determination of metrifonate and dichlorvos in whole blood using gas and gas chromatography-mass spectrometry. J. Chromatography 529:309–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinz, V.C., Grewig, S. & Schmidt, B.H. Metrifonate induces cholinesterase inhibition exclusively via slow release of dichlorvos. Neurochem Res 21, 331–337 (1996). https://doi.org/10.1007/BF02531649

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02531649

Key Words

Navigation