Skip to main content

Double Fertilization in Flowering Plants: Origin, Mechanisms and New Information from in vitro Fertilization

  • Chapter
Fertilization in Higher Plants

Abstract

One hundred years ago, Sergius Nawaschin (1898), followed a few months later by Léon Guignard (1899) suggested for the first time that fertilization is actually double in Lilium martagon and Fritillaria tenella. Double fertilization is now believed to be ubiquitous among flowering plants. The pollen grain (male gametophyte) germinates on a pistil. It grows a tube in which two male gametes are moved toward an embryo sac (female gametophyte) that contains in particular two female gametes, the egg and the central cells, and two synergids. Once the pollen tube has reached the embryo sac, it releases the two male gametes into a degenerated synergid. One fuses with the egg cell to form a zygote that further develops into the embryo, and the other fuses with the central cell to form a polyploid (generally triploid) cell that develops into the endosperm. Thus, two fertilizations happen simultaneously. This sequence was well documented, especially in the sixties by William Jensen using transmission electron microscopy (Jensen 1964, Jensen and Fischer, 1968). However the underlying mechanisms are not well known, mainly because fertilization takes place inside the embryo sac itself embedded in sporophytic tissues. The isolation of both male and female gametes from the gametophytes (Cass, 1973; Hu et al., 1985; also see review: Theunis et al., 1991; Huang and Russell, 1992a) and their fusion under in vitro conditions (Kranz et al., 1991; Kranz and Lörz, 1993; Faure et al., 1994; also see review: Dumas and Faure, 1995; Kranz and Dresselhaus, 1996) now allows new experimental investigations. The interest in fertilization, the central step of sexual reproduction, has therefore been renewed over the last ten years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alikani M, Cohen J, Palermo GD (1995) Enhancement of fertilization by micromanipulation. Curr Op Obstetrics and Gynecology 7: 182 – 187

    Article  CAS  Google Scholar 

  • Almeida EAC, Huovila A-PJ, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, Mercurio AM, Sonnenberg A, Primakoff P, Myles D, White JM (1995) Mouse egg integrin a6bl functions as a sperm receptor. Cell 81: 1095 –1104

    Article  PubMed  CAS  Google Scholar 

  • Blobel CP, Wolfsberg TG, Turk CW, Myles DG, Primakoff P, White JM (1992) A potential fusion peptide and integrin ligand domain in a protein active in sperm-egg fusion. Nature 356: 248 –252

    Article  PubMed  CAS  Google Scholar 

  • Brawley SH (1990) The fast block against polyspermy in fucoid algae is an electrical block. Dev Biol 144: 94 –106

    Article  Google Scholar 

  • Cai G, Moscatelli A, Cresti M (1997) Cytoskeletal organization and pollen tube growth. Trends in Plant Sci 2: 86 –91

    Article  Google Scholar 

  • Cao Y, Russell SD (1997) Mechanical isolation and ultrastructural characterization of viable egg cells in Plumbago zeylanica. Sex Plant Reprod 10: 368 –373

    Article  Google Scholar 

  • Cao Y, Reece A, Russell SD (1996) Isolation of viable sperm cells from tobacco (Nicotiana tabacum). Zygote 4: 81 –84

    Article  PubMed  CAS  Google Scholar 

  • Carlson WR (1986) The B chromosome of maize. Critical Review in Plant Science 3: 201 –226

    Article  Google Scholar 

  • Carmichael JS, Friedman WE (1995) Double fertilization in Gnetum gnemon: The relationship between the cell cycle and sexual reproduction. Plant Cell 7: 1975 –1988

    Article  PubMed  CAS  Google Scholar 

  • Carmichael JS, Friedman WE (1996) Double fertilization in Gnetum gnemon (Gnetaceae): Its bearing on the evolution of sexual reproduction within the Gnetales and the anthophyte clade. Am J Bot 83: 767 –780

    Article  Google Scholar 

  • Cass DD (1973) An ultrastructural and Nomarski-interference study of the sperms of barley. Can J Bot 51: 601 –605

    Article  Google Scholar 

  • Chaboud A, Perez R (1992) Generative cells and male gametes: Isolation, physiology, and biochemistry. Int Rev Cytol 140: 205 –232

    Article  CAS  Google Scholar 

  • Chaubal R, Reger BJ (1990) Relatively high calcium is localized in synergig cells of wheat ovaries. Sex Plant Reprod 3: 98 –102

    Article  Google Scholar 

  • Chaubal R, Reger BJ (1992a) Calcium in the synergid cells and other regions of pearl millet ovaries. Sex Plant Reprod 5: 34 –46

    Article  Google Scholar 

  • Chaubal R, Reger BJ (1992b) The dynamics of calcium distribution in the synergid cells of wheat after pollination. Sex Plant Reprod 5: 206 –213

    Google Scholar 

  • Chaubal R, Reger BJ (1993) Prepollination degeneration in mature synergids of pearl millet: an examination using antimonate fixation to localize calcium. Sex Plant Reprod 6: 225 –238

    Article  Google Scholar 

  • Diboll AG (1968) Fine structural development of the megagametophyte of Zea mays following fertilization. Am J Bot 55: 787 – 806

    Article  Google Scholar 

  • Diboll AG, Larson DA (1966) An electron microscopic study of the mature megagametophyte in Zea mays. Am J Bot 53: 391 –402

    Article  PubMed  CAS  Google Scholar 

  • Digonnet C, Aldon D, Leduc N, Dumas C, Rougier M (1997) First evidence of a calcium transient in flowering plants at fertilization. Development 124: 2867 –2874

    PubMed  CAS  Google Scholar 

  • Dresselhaus T, Lörz H, Kranz E (1994) Representative cDNA libraries from few plant cells. Plant J 5: 605 –610

    Article  PubMed  CAS  Google Scholar 

  • Dresselhaus T, Hagel C, Lorz H, Kranz E (1996) Isolation of a full-length cDNA encoding calreticulin from a PCR library of in vitro zygotes in maize. Plant Mol Biol 31: 23 –34

    Article  PubMed  CAS  Google Scholar 

  • Dumas C, Faure J-E (1995) Use of in vitro fertilization and zygote culture in crop improvement. Curr Op Biotech 6: 183 –188

    Article  CAS  Google Scholar 

  • Dumas C, Knox RB, McConchie CA, Russell SD (1984) Emerging physiological concepts in fertilization. What’s new in Plant Physiology 15: 17 –20

    Google Scholar 

  • Dupuis I, Roeckel P, Matthys-Rochon E, Dumas C (1987) Procedure to isolate viable sperm cells from corn (Zea mays L) pollen grains. Plant Physiol 85: 876 –878

    Article  PubMed  CAS  Google Scholar 

  • Evans JP, Schultz RM, Kopf GS (1995) Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of PH-30 (fertilin) ß. J Cell Sci 108: 3267 –3278

    PubMed  CAS  Google Scholar 

  • Faure J-E, Mogensen HL, Kranz E, Digonnet C, Dumas C (1992) Ultrastructural characterization and three-dimensional reconstruction of isolated maize (Zea mays L.) egg cell protoplasts. Protoplasma 171: 97 –103

    Article  Google Scholar 

  • Faure J-E, Mogensen HL, Dumas C, Kranz E, Lörz H (1993) Karyogamy after electrofusion of single egg and sperm cell protoplast from maize (Zea mays L.): Cytological evidences and time course. Plant Cell 5: 747 –755

    Article  PubMed  Google Scholar 

  • Faure J-E, Digonnet C, Dumas C (1994) An in vitro system for adhesion and fusion of maize gametes. Science 263: 1598 –1600

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE (1990) Double fertilization in Ephedra, a nonflowering seed plant: its bearing on the origin of angiosperms. Science 247: 95 –954

    Article  Google Scholar 

  • Friedman WE (1992) Evidence of a pre-angiosperm origin of endosperm: implications for the evolution of flowering plants. Science 255: 336 –339

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE, Carmichael JS (1996) Double fertilization in Gnetales: Implications for understanding reproductive diversification among seed plants. Int J Plant Sci 157: S77–S94

    Article  Google Scholar 

  • Guignard L (1899) Sur les anthérozoïdes et la double copulation sexuelle chez les vegetaux angiospermes. Rev Gen de Bot 11:129–135

    Google Scholar 

  • Holm PB, Knudsen S, Mouritzen P, Negri D, Olsen FL, Roué C (1994) Regeneration of fertile barley plantsfrom mechanically isolated protoplasts of the fertilized egg cell. Plant Cell 6: 531 – 543

    Article  PubMed  CAS  Google Scholar 

  • Hu S-Y, Li LG, Zhu C (1985) Isolation of viable embryo sacs and their protoplasts of Nicotiana tabacum. Acta Bot Sin 27: 343 –347

    Google Scholar 

  • Huang B-Q, Russell SD (1992a) Female germ unit: Organization, isolation, and function. Int Rev Cytol 140: 233 –293

    Article  Google Scholar 

  • Huang B-Q, Russell SD (1992b) Synergid degeneration in Nicotiana: a quantitative, fluorochromatic and chlorotetracycline study. Sex Plant Reprod 5: 151 – 155

    Google Scholar 

  • Huang B-Q, Russell SD (1994) Fertilization in Nicotiana tabacum: cytoskeletal modifications in the embryo sac during synergid degeneration. Planta 194: 200 – 214

    Article  CAS  Google Scholar 

  • Huang B-Q, Sheridan WF (1994) Female gametophyte development in maize: micro tubular organization and embryo sac polarity. Plant Cell 6: 845 – 861

    Article  PubMed  Google Scholar 

  • Huang B-Q, Strout GW, Russell SD (1993a) Fertilization in Nicotiana Tabacum — Ultrastructural organization of Propane-jet-frozen embryo sacs in vivo. Planta 191: 256 – 264

    Article  Google Scholar 

  • Huang B-Q, Pierson ES, Russell SD, Tiezzi A, Cresti M (1993b) Cytoskeletal organisation and modification during pollen tube arrival, gamete delivery and fertilisation in Plumbago zeylanica. Zygote 1: 143 –154

    Article  CAS  Google Scholar 

  • Jaffe LA (1976) Fast block to polyspermy in sea urchin eggs is electrically mediated. Nature 261: 68 –71

    Article  PubMed  CAS  Google Scholar 

  • Jaffe LA (1996) Egg membranes during fertilization. In: Schultz et al (eds) Molecular Biology of Membrane Transport Disorders. Plenum Press, New-York, pp 367 –378

    Chapter  Google Scholar 

  • Janson J, Willemse MTM (1995) Pollen tube penetration and fertilization in Lilium longiflorum (Liliaceae). Am J Bot 82:186–196

    Article  Google Scholar 

  • Jensen WA (1964) Observations on the fusion of nuclei in plants. J Cell Biol 23: 669 –672

    Article  PubMed  CAS  Google Scholar 

  • Jensen WA, Fisher DB (1968) Cotton embryogenesis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78: 158 –183

    Article  Google Scholar 

  • Katoh N, Lörz H, Kranz E (1997) Isolation of viable egg cells of rape (Brassica napus L). Zygote: 5: 31 –33

    Article  PubMed  CAS  Google Scholar 

  • Keijzer CJ, Reinders MC, Leferinkten Klooster HB (1988) A micromanipulation method for artificial fertilization in Torenia. In: Cresti M, Gori P, Pacini E (eds) Sexual Reproduction in Higher Plants, Springer-Verlag, Berlin pp 119 –124

    Google Scholar 

  • Kovacs M, Barnabas B, Kranz E (1994) The isolation of viable egg cells of wheat (Triticum aestivum L.).Sex Plant Reprod 7: 311 –312

    Google Scholar 

  • Kovacs M, Barnabas B, Kranz E (1995) Electro-fused isolated wheat (Triticum aestivum L.) gametes develop into multicellular structures. Plant Cell Rep 15: 178 –180

    Article  CAS  Google Scholar 

  • Kranz E, Bautor J, Lörz H (1991) In vitro fertilization of single isolated gametes by electrofusion. Sex Plant Reprod 4: 12 –16

    Google Scholar 

  • Kranz E, Lörz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5: 739 –746

    Article  PubMed  Google Scholar 

  • Kranz E, Lörz H (1994) In vitro fertilization of maize by single egg and sperm cell protoplast fusion mediated by high calcium and high pH. Zygote 2: 125 –128

    Article  PubMed  CAS  Google Scholar 

  • Kranz E, Von Wiegen P, Lörz H (1995) Early cytological events after induction of cell division in egg cells and zygote development following in vitro fertilization with angiosperm gametes. Plant J 8: 9 –23

    Article  Google Scholar 

  • Kranz E, Dresselhaus T (1996) In vitro fertilization with isolated higher plant gametes. Trends in Plant Sci 1: 82 –89

    Article  Google Scholar 

  • Lanzendorf SE, Malony MK, Veeck LL, Slusser J, Hodgen GD, Rosenwaks Z (1988) A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertility and Sterility 49: 835 –842

    PubMed  CAS  Google Scholar 

  • Matthys-Rochon E, Detchepare S, Wagner V, Roeckel P, Dumas C (1988) Isolation and characterization of viable sperm cells from tricellular pollen grains. In: Cresti M, Gori P, Pacini E (eds) Sexual Reproduction in Higher Plants. Springer-Verlag, Berlin, pp 245 –250

    Google Scholar 

  • Matthys-Rochon E, Mol R, Heizmann P, Dumas C (1994) Isolation and microinjection of active sperm nuclei into egg cells and central cells of isolated maize embryo sac. Zygote 2: 29 –35

    Article  PubMed  CAS  Google Scholar 

  • McConchie CA, Hough T, Knox RB (1987) Ultrastructural analysis of the sperm cells of mature pollen of maize, Zea mays. Protoplasma 139: 9 –19

    Article  Google Scholar 

  • Mogensen HL (1988) Exclusion of male mitochondria and plastids during syngamy in barley as a basis for maternal inheritance. Proc Natl Acad Sci USA 85: 2594 –2597

    Article  PubMed  CAS  Google Scholar 

  • Mogensen HL (1990) Fertilization and early embryogenesis. In: Chapman CP (eds) Reproductive versatility in the grasses. New York: Cambridge University Press, pp 76 –99

    Google Scholar 

  • Mogensen HL (1992) The male germ unit: concept, composition, and significance. Int Rev Cytol 140: 129 –147

    Article  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am J Bot 83: 383 –404

    Article  Google Scholar 

  • Mòl R (1986) Isolation of protoplasts from female gametophytes of Torenia fournieri. Plant Cell Rep 3: 202 –206

    Article  Google Scholar 

  • Mòl R, Matthys-Rochon E, Dumas C (1994) The kinetics of cytological events during double fertilizationin Zea mays L. Plant J 5: 197 –206

    Article  Google Scholar 

  • Nawaschin SG (1898) Resultate einer Revision der Befruchtungsvorgange bei Lilium martagon und Fritillaria tenella. Bui Acad Imp Sci St Petersburg 33: 39 –47

    Google Scholar 

  • Palevitz BA, Tiezzi A (1992) Organization, composition, and function of the generative cell and sperm cytoskeleton. Int Rev Cytol 140: 149 –185

    Article  Google Scholar 

  • Richter, Kranz E, Lorz H, Dresselhaus T (1996) A reverse transcriptase-polymerase chain reaction assay for gene expression studies at the single cell level. Plant Sci 114: 93 –99

    Article  Google Scholar 

  • Roman H (1948) Directed fertilization in maize. Proc Natl Acad Sci USA 34: 36 –42

    Article  PubMed  CAS  Google Scholar 

  • Russell SD (1983) Fertilization in Plumbago zeylanica: Gametic fusion and fate of the male cytoplasm. Am J Bot 70: 416 –434

    Article  Google Scholar 

  • Russell SD (1985) Preferential fertilization in Plumbago: Ultrastructural evidence for gamete-level recognition in an angiosperm. Proc Natl Acad Sci USA 82: 6129 –6132

    Article  PubMed  CAS  Google Scholar 

  • Russell SD (1986) Isolation of sperm cells from the pollen of Plumbago zeylanica. Plant Physiol 81: 317 –319

    Article  PubMed  CAS  Google Scholar 

  • Russell SD (1992) Double fertilization. Int Rev Cytol 140: 357 –388

    Article  Google Scholar 

  • Russell SD (1993) The egg cell: development and role in fertilization and early embryogenesis. Plant Cell 5: 1349 –1359

    Article  PubMed  Google Scholar 

  • Russell SD (1996) Attraction and transport of male gametes for fertilization. Sex Plant Reprod 9: 337 –342

    Article  Google Scholar 

  • Schultz RM, Kopf GS (1995) Molecular basis of mammalian egg activation. Curr Topics in Dev Biol 30: 21 –62

    Article  CAS  Google Scholar 

  • Shi L,Zhu T, Mogensen HL, Keim P (1996) Sperm identification in maize by fluorescence in situ hybridization. Plant Cell 8: 815 –821

    Article  PubMed  CAS  Google Scholar 

  • Szakacs E, Barnabas B (1989) Sperm cell isolation from wheat (Triticum aestivum L) pollen. In: Barnabas B, Liszt K (eds) Characterization of male transmission units in higher plants. MTA Copy, Budapest, pp 37 –40

    Google Scholar 

  • Theunis CH, Pierson ES, Cresti M (1991) Isolation of male and female gametes in higher plants. Sex Plant Reprod 4: 145 –154

    Article  Google Scholar 

  • Van Der Maas HM, Zaal MACM, De Jong ER, Van Went JL (1993a) Optimization of isolation and storage of sperm cells from the pollen of perennial ryegrass (Lolium perenne L.). Sex Plant Reprod 6: 64 –70

    Article  Google Scholar 

  • Van Der Maas HM, Zaal MACM, De Jong ER, Krens FA, Van Went JL (1993b) Isolation of viable egg cellsof perennial ryegrass (Lolium perenne L.). Protoplasma 173: 86 –89

    Article  Google Scholar 

  • Wagner VT, Song YC, Matthys-Rochon E, Dumas C (1989) Observations on the isolated embryo sac of Zea mays L. Plant Sci 59: 127 –132

    Article  Google Scholar 

  • Wright PJ, Green JR, Callow JA (1995a) The Fucus (Phaeophyceae) sperm receptor for egg. I. Development and characteristics of a binding assay. J Phycol 31: 584 –591

    Article  Google Scholar 

  • Wright PJ, Callow JA, Green JR (1995b) The Fucus (Phaeophyceae) sperm receptor for egg. II. Isolation of a binding protein which partially activates eggs. J Phycol 31: 592 –600

    Article  CAS  Google Scholar 

  • Yanagimachi R (1978) Calcium requirement for sperm-egg fusion in mammals. Biol Reprod 19: 949 –958

    Article  PubMed  CAS  Google Scholar 

  • Yu H-S, Russell SD (1994) Occurence of mitochondria in the nuclei of tobacco sperm cells. Plant Cell 6: 1477 –1484

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Williams CM, Campenot MK, McGann LE, Cutler AJ, Cass DD (1995) Effects of calcium, magnesium, potassium, potassium, and boron on sperm cells isolated from pollen of Zea mays L. Sex Plant Reprod 8: 113 –122

    Article  Google Scholar 

  • Zhang G, Cass DD (1997) Calcium signaling in sexual reproduction of flowering plants. Recent Res Devel in Plant Physiol 1: 75 –83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faure, JE. (1999). Double Fertilization in Flowering Plants: Origin, Mechanisms and New Information from in vitro Fertilization. In: Cresti, M., Cai, G., Moscatelli, A. (eds) Fertilization in Higher Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59969-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59969-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64202-9

  • Online ISBN: 978-3-642-59969-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics