Skip to main content

A General Approach to Test the Pertinence of a Consensus Classification

  • Conference paper
Data Analysis, Classification, and Related Methods

Abstract

Many techniques have been proposed to combine classifications defined on the same set of objects. All the methods that have been developed are designed to return a solution, but validation of the solution is seldom performed. In this paper we propose a general approach to test the pertinence of a consensus classification and discuss the choices that one has to make at each step of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADAMS, E.N., III. (1972): Consensus Techniques and the Comparison of Taxo-nomic Trees. Systematic Zoology 21, 390–397

    Article  Google Scholar 

  • BANDELT, H.-J. and DRESS, A.W.M. (1989): Weak Hierarchies Associated with Similarity Mesures: an Additive Clustering Technique. Bulletin of Mathematical Biology, 51, 133–166

    Google Scholar 

  • BARTHÉLÉMY, J.-P. and McMORRIS, F.R. (1986): The Median Procedure forn-Trees. Journal of Classification, 3, 329–334

    Article  Google Scholar 

  • BAUM, B.R. (1992): Combining Trees as a Way of Combining Data for PhylogeneticInference, and the Desirability of Combining Gene Trees. Taxon,41, 3–10.

    Article  Google Scholar 

  • BERTRAND, P. and DIDAY, E.(1985): A Visual Representation of the Compatibility between an Order and a Dissimilarity Index: the Pyramids. Computational Statistics Quaterly, 2, 31–42.

    Google Scholar 

  • BOSIBUD, H.M. and BOSIBUD, L.E. (1972): A Metric for Classifications. Taxon, 21, 607–613.

    Article  Google Scholar 

  • BREMER, K. (1990): Combinable Component Consensus. Cladistics, 6, 369–372.

    Article  Google Scholar 

  • BROSSIER, G. (1990): Piecewise Hierarchical Clustering. Journal of Classification, 7, 197–216.

    Article  Google Scholar 

  • BUNEMAN, P. (1971): The Recovery of Trees From Measures of Dissimilarity. In: F.R. Hudson, D.G. Kendall and P. Tautu (Eds.): Mathematics in Archeological and Historical Sciences. Edinburgh University Press, Edinburgh, 387–395.

    Google Scholar 

  • CUCUMEL, G. and LAPOINTE, F.-J. (1998): Assessing the Pertinence of a Consensus with Permutations. Short Papers of the VI Conference of the IFCS. Istituto Nazionale di Statistica, Roma, 89–91.

    Google Scholar 

  • DAY, W.H.E. (1983): Distributions of Distances Between Pairs of Classifications. In: J. Felsenstein (Ed.): Numerical Taxonomy. Springer-Verlag, Berlin, 127–131.

    Google Scholar 

  • ESTABROOK, G.F., McMORRIS, F.R. and MEACHAM, C. (1985): Comparison of Undirected phylogenetic trees based on subtrees of four evolutionary units. Systematic Zoology, 34, 193–200.

    Article  Google Scholar 

  • FINDEN, C.R. and GORDON, A.D. (1985): Obtaining Common Pruned Trees. Journal of Classification, 2, 225–276.

    Article  Google Scholar 

  • FOWLKES, E.B. and MALLOWS, C.L. (1983): A Method for Comparing Two Hierarchical Clusterings. Journal of the American Statistical Association, 78, 553–569.

    Article  Google Scholar 

  • FURNAS, G.W. (1984): The Generation of Random, Binary Unordered Trees. Journal of Classification, 1, 187–233.

    Article  Google Scholar 

  • GORDON, A.D. (1986): Consensus Supertrees: The Synthesis of Rooted Trees Containing Overlapping Sets of Labeled Leaves. Journal of Classification, 3, 335 348.

    Google Scholar 

  • HARTIGAN, J.A. (1967): Representation of Similarity Matrices by Trees. Journal of the American Statistical Association, 62, 1140–1148.

    Article  Google Scholar 

  • LAPOINTE, F.-J. (1998a): How to Validate Phylogenetic Trees? A Stepwise Procedure. In: C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock and Y. Baba (Eds.): Data Science, Classification, and Related Methods. Springer-Verlag, Tokyo, 71–88.

    Google Scholar 

  • LAPOINTE, F.-J. (1998b): For Consensus (with Branch Lengths). In: A. Rizzi, M. Vichi and H.-H. Bock (Eds.): Advances in Data Science and Classification. Springer-Verlag, Berlin, 73–80.

    Google Scholar 

  • LAPOINTE, F.-J. and CUCUMEL, G. (1997): The Average Consensus Procedure: Combination of Weighted Trees Containing Identical or Overlapping Sets of Objects. Systematic Biology, 46, 306–312.

    Article  Google Scholar 

  • LAPOINTE, F.-J. and LEGENDRE, P. (1990): A Statistical Framework to Test the Consensus of Two Nested Classifications. Systematic Zoology, 39, 1 13.

    Article  Google Scholar 

  • LAPOINTE, F.-J. and LEGENDRE, P. (1991): The Generation of Random Ul- trametric Matrices Representing Dendrograms. Journal of Classification, 8, 177 200.

    Google Scholar 

  • LAPOINTE, F.-J. and LEGENDRE, P. (1995): Comparison Tests for Dendrograms: A Comparative Evaluation. Journal of Classification, 12, 265 282.

    Google Scholar 

  • LECLERC, B. (1998): Consensus of Classifications: the Case of Trees. In: A. Rizzi, M. Vichi and H.-H. Bock (Eds.): Advances in Data Science and Classification. Springer-Verlag, Berlin, 81–90.

    Google Scholar 

  • LEFKOVITCH, L.P. (1985): Euclidean Consensus Dendrograms and Other Classification Structures. Mathematical Biosciences, 74, 1–15.

    Article  Google Scholar 

  • MARGUSH, T. (1982): Distances Between Trees. Discrete Applied Mathematics, 4, 281–290.

    Article  Google Scholar 

  • MARGUSH, T. and McMORRIS, F.R. (1981): Consensus n-Trees. Bulletin of Mathematical Biology, 43, 239–244.

    Google Scholar 

  • McMORRIS, F.R., MERONK, D.B. and NEUMANN, D.A. (1983): A View of Some Consensus Methods for Trees. In: J. Felsenstein (Ed.): Numerical Taxonomy. Springer-Verlag, Berlin, 122–126.

    Google Scholar 

  • McMORRIS, F.R. and POWERS, R.C. (1991): Consensus Weak Hierarchies. Bulletin of Mathematical Biology, 53, 679–684.

    Google Scholar 

  • NEUMANN, D.A. (1983): Faithful Consensus Methods for n-Trees. Mathematical Biosciences, 63, 271–287.

    Article  Google Scholar 

  • ODEN, N.L. and SHAO, K.T. (1984): An Algorithm to Equiprobably Generate all Directed Trees With k Labeled Terminal Nodes and Unlabeled Interior Nodes. Bulletin of Mathematical Biology, 46, 379–387.

    Google Scholar 

  • PENNY, D. and HENDY, M.D. (1985): The Use of Tree Comparison Metrics. Systematic Zoology, 34, 75–82.

    Article  Google Scholar 

  • QUIROZ, A.J. (1989): Fast Random Generation of Binary, t-ary and Other Types of Trees. Journal of Classification, 6, 223–231.

    Article  Google Scholar 

  • ROBINSON, D.F. (1971): Comparison of Labeled Trees With Valency Three. Journal of Combinatorial Theory, 11, 105–119.

    Article  Google Scholar 

  • ROBINSON, D.F. and FOULDS, L.R. (1979): Comparison of Weighted Labeled Trees. In: C. Hayashi, N. Ohsumi, K. Yajima, Y. Tanaka, H.-H. Bock and Y. Baba (Eds.): Lecture Notes in Mathematics, Volume 748. Springer-Verlag, Berlin, 119–126.

    Google Scholar 

  • ROBINSON, D.F. and FOULDS, L.R. (1981): Comparison of Phylogenetic Trees. Mathematical Biosciences, 53, 131–147.

    Article  Google Scholar 

  • ROHLF, F.J. (1982): Consensus Indices for Comparing Classifications. Mathematical Biosciences, 59, 131–144.

    Article  Google Scholar 

  • SIMBERLOFF, D., HECK, K.L., McCOY, E.D. and CONNOR, E.F. (1981): There Have Been no Statistical Tests of Cladistics Biogeographical Hypotheses. In: G. Nelson and D.E. Rosen (Eds.): Vicariance Biogeography: A Critique. Columbia University Press, New York, 40–63.

    Google Scholar 

  • SOKAL R.R. and ROHLF, F.J. (1962): The Comparison of Dendrograms by Objective Methods. Taxon, 9, 33–40.

    Article  Google Scholar 

  • SOKAL R.R. and ROHLF, F.J. (1981): Taxonomic Congruence in the Lep- topodomorpha Re-examined. Systematic Zoology, 30, 309–325.

    Article  Google Scholar 

  • STEEL, M.A. (1988): Distribution of the Symmetric Difference Metric on Phylogenetic Trees. SIAM Journal of Discrete Mathematics, 1, 541–555.

    Article  Google Scholar 

  • STEEL, M.A. (1992): The Complexity of Reconstructing Trees From Qualitative Characters and Subtrees. Journal of Classification, 1, 91–116.

    Article  Google Scholar 

  • STEEL, M.A. and PENNY, D. (1993): Distribution of Tree Comparison Metrics- Some New Results. Systematic Biology, 42, 126–141.

    Google Scholar 

  • STINEBRICKNER, R. (1984): An Extension of Intersection Methods From Trees to Dendrograms. Systematic Zoology, 33, 381–386.

    Article  Google Scholar 

  • WILKINSON, M. (1994): Common Cladistic Information and its Consensus Representation: Reduced Adams and Reduced Cladistic Consensus Trees and Profiles. Systematic Biology, 43, 343–368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Cucumel, G., Lapointe, FJ. (2000). A General Approach to Test the Pertinence of a Consensus Classification. In: Kiers, H.A.L., Rasson, JP., Groenen, P.J.F., Schader, M. (eds) Data Analysis, Classification, and Related Methods. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59789-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59789-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67521-1

  • Online ISBN: 978-3-642-59789-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics