Skip to main content

Friction and Wear Properties of Microstructures in MEMS

  • Conference paper
Transducers ’01 Eurosensors XV
  • 7 Accesses

Summary

Friction and wear has been a major problem for many micro actuators. The friction and wear properties in micro scale have been investigated experimentally by many research institutions using both scientific instrumentation and microstructures of practical dimensions. Based on the experimental results, models for micro friction are discussed and the different friction properties for micro and macro scales are compared. The measures to mitigate the friction and wear problem are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. P. de Boer, Jim M. Redmond, T. A. Michalske, “A hinged-pad test structure for sliding fricition measurement in micromachining”, Proc. SPIE, Vol. 3512, pp. 241–250, Santa Clara, CA, 1998.

    Article  Google Scholar 

  2. D. M. Tanner, “Reliability of Surface Micromachined MEMS Actuators” Proc. 22nd International Conference in Microelectronics, Nis, Yugoslavia, pp. 97–104, May 2000.

    Google Scholar 

  3. K. S. Breuer, et al, “Challenges for High-Speed Lubrication in MEMS”, Nano Tribology. Ed. S. Hsu. Kluwer Press, 2000.

    Google Scholar 

  4. B. Bhushan and V. N. Koinkar, “Tribological Studies of Silicon for Magnetic Recording Applications”, J. Appl. Phys. Vol. 75, No. 10, pp. 5741–5746, 1994.

    Article  Google Scholar 

  5. U. Beerschwinger, R. L. Reuben, S. J. Yang, “Frictional study of micromotor bearings”, Sensors and Actuators, A63, pp. 229–241, 1997.

    Article  Google Scholar 

  6. R. Maboudian, “Surface Processes in MEMS Technology”, Surface Science Reports, Vol. 30, pp. 207–269, 1998.

    Article  Google Scholar 

  7. B. Bhushan, J. N. Israelachvili and U. Landman, “Nanotribology, wear and lubrication at the atomic scale” Nature, Vol. 374, No. 13, pp. 607–616, 1995.

    Article  Google Scholar 

  8. B. Bhushan, C. Dandavate, “Thin-film friction and adhesion studies using atomic force microscopy”, Journal of Applied Physics, Vol. 87, No. 3, pp. 1201–1210, 2000.

    Article  Google Scholar 

  9. U. D. Schwarz, O. Zworner, P. Koster, R. Wiesendanger, “Quantitative Analysis of the Frictional properties of Solid Materials at low Loads. I. Carbon Compounds”, Physical Review B, Vol. 56, No. 11, pp. 6987–6996, 1997.

    Article  Google Scholar 

  10. A. G. Khurshudov, K. Kato, H. Koide, “Wear of the AFM diamond tip sliding against silicon”, Vol. 22–27, pp. 203–204, 1997.

    Google Scholar 

  11. R. Prasad, N. MacDonaldl and D. Tayor, “Micro-instrumentation for Tribological Measurement”, Proc. Transducers’ 95, Vol. II, pp. 52–55, 1995.

    Google Scholar 

  12. N. R. Tas, C. Gui, and M. Elwenspoek, “Static Friction in Elastic Adhesive MEMS Contacts, Models and Experiment”, Proc. MEMS-2000, IEEE.

    Google Scholar 

  13. S. L. Miller, J. J. Sniegowski, G. LaVigne, P. J. McWhorter, “Performance Tradeoffs for a Surface Micro machined Micro engine”, Proc. SPIE, Austin, TX, Oct 14–15, Vol. 2882, pp.182–191, 1996.

    Article  Google Scholar 

  14. G. He, M.H. Muser, M. O. Robbins, “Adsorbed Layers and the Origin of Static Friction”, Science, Vol. 284, pp. 1650–1652, 1999.

    Article  Google Scholar 

  15. K. L. Jonhnson, “Contact Mechanics”, Cambridge University Press, Cambridge, 1985.

    Book  Google Scholar 

  16. Q. Chen, G.P. Carman, “Microscale tribology (friction) measurement and influence of crystal orientation and fabrication process”, Proc. of Microscale Systems: Mechanics and Measurements Symposium, 25. 2000.

    Google Scholar 

  17. X. D. Wang, Z. Y. Chen, X. H. Liu, W. Y. Wang, “Friction Coefficient and Wearing Properties of Amorphous Diamond Films Deposited on Si, Ni and Cu Substrates”, Proc. Intl. Conf. Nanotechnologies for the future, Houston, TX, USA, 2000.

    Google Scholar 

  18. J. Sakata, T. Tsuchiya, A. Inoue, et al, “Anti-stiction Silanization Coating to Silicon Microstructures by a Vapor Phase Deposition Process”, Proc. Transducers’99, Paper No. 1A3-2, 1999.

    Google Scholar 

  19. L. Howald, R. Luthi, E. Meyer and H. J. Guntherodt, “Atomic-force Microscopy on the Si(111) 7×7 Surface”, Physical Review B, Vol. 51, No. 8, pp. 5484–5487, 1995-II.

    Google Scholar 

  20. P. M. Sarro, “Silicon Carbon as a New MEMS Technology”, Sensors and Actuators, Vol. 82, pp. 210–218, 2000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, W., Wang, Y., Bao, H., Xiong, B., Bao, M. (2001). Friction and Wear Properties of Microstructures in MEMS. In: Obermeier, E. (eds) Transducers ’01 Eurosensors XV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59497-7_312

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59497-7_312

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42150-4

  • Online ISBN: 978-3-642-59497-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics