Skip to main content

Friction and Wear in Micro- and Nanomachines

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The prediction and characterization of multilength-scale tribological phenomena is challenging, yet essential for the advancement of micro- and nanomachine technology. Here, we consider theoretical underpinnings of multiasperity friction, review various approaches to measure micro- and nanoscale friction and discuss the effect of monolayer coatings to reduce friction and wear. We then overview a theoretical framework known as rate-and-state friction (GlossaryTerm

RSF

), in which friction is considered to be a continuous function of velocity and interface state. A microscale test platform that is used to measure friction over multiple decades of velocity and normal load is presented and results are reported. Using the RSF framework, we quantitatively predict and validate the transition from stick-slip to steady sliding, enabling the creation of a microscale kinetic phase diagram. Next, we take a brief look at continued progress in spinning micromachine motor technology. Finally, we discuss wear- and tribopolymer-related phenomena in micro- and nanoswitches, which are promising devices to complement transistors due to their low on resistance and steep subthreshold swing. We anticipate great progress towards reliable, contacting micro- and nanomachines by linking theory and experiment to nano- and microscale tribological phenomena and by improving the testing, materials and processing methods used to characterize these phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.S. Rodgers, J.J. Sniegowski: Five-level polysilicon surface micromachine technology: Application to complex mechanical systems. In: Proc. Solid-State Sens. Actuator Workshop, Hilton Head Island (1998) pp. 144–149

    Google Scholar 

  2. J.J. Sniegowski, M.P. de Boer: IC-compatible polysilicon surface micromachining, Annu. Rev. Mater. Sci. 30, 299–333 (2000)

    Google Scholar 

  3. L. Eldada: Advances in telecom and datacom optical components, Opt. Eng. 40, 1165 (2001)

    Google Scholar 

  4. E. Sarajlic, C. Yamahata, E. Berenschot, N. Tas, H. Fujita, G. Krijnen: High-performance shuffle motor fabricated by vertical trench isolation technology, Micromachines 1, 48–67 (2010)

    Google Scholar 

  5. P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig: The millipede – More than one thousand tips for future AFM data storage, IBM J. Res. Dev. 44, 323 (2000)

    Google Scholar 

  6. J.M. Zara, S.W. Smith: A micromachine high frequency ultrasound scanner using photolithographic fabrication, IEEE Trans. Ultrason. ferroelectr. Freq. Control 49, 947–958 (2002)

    Google Scholar 

  7. T. Akiyama, D. Collard, H. Fujita: Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS, J. Microelectromech. Syst. 6, 10 (1997)

    Google Scholar 

  8. E. Sarajlic: Electrostatic Microactuators Fabricated by Vertical Trench Isolation Technology, Ph.D. Thesis (University of Twente, Eusclede 2005)

    Google Scholar 

  9. M. Naraghi, T. Ozkan, I. Chasiotis, S.S. Hazra, M.P. de Boer: MEMS platform for on-chip nanomechanical experiments with strong and highly ductile nanofibers, J. Micromech. Microeng. 20, 125022 (2010)

    Google Scholar 

  10. T. Akiyama, K. Shono: Controlled stepwise motion in polysilicon microstructures, J. Microelectromech. Syst. 2, 106 (1993)

    Google Scholar 

  11. R.J. Linderman, V.M. Bright: Nanometer precision positioning robots utilizing optimized scratch drive actuators, Sens. Actuators A 91, 292 (2001)

    Google Scholar 

  12. N. Tas, J. Wissink, L. Sander, T. Lammerink, M. Elwenspoek: Modeling, design and testing of the electrostatic shuffle motor, Sens. Actuators A 70, 171 (1998)

    Google Scholar 

  13. M.P. de Boer, D.L. Luck, W.R. Ashurst, A.D. Corwin, J.A. Walraven, J.M. Redmond: High-performance surface-micromachined inchworm actuator, J. Microelectromech. Syst. 13, 63 (2004)

    Google Scholar 

  14. E. Sarajlic, E. Berenschot, H. Fujita, G. Krijnen, M. Elwenspoek: Bidirectional electrostatic linear shuffle motor with two degrees of freedom. In: Proc. IEEE MEMS (2005) pp. 391–394

    Chapter  Google Scholar 

  15. G. Amontons: On the resistance originating in machines (in French), Mém. Acad. R. A 0, 206–222 (1699)

    Google Scholar 

  16. F.P. Bowden, D. Tabor: Friction and Lubrication of Solids: Part I (Oxford Univ. Press, Oxford 1950)

    MATH  Google Scholar 

  17. H. Hertz: On the contact of elastic solids, J. Reine Angew. Math. 92, 156–171 (1881)

    MATH  Google Scholar 

  18. K.L. Johnson, K. Kendall, A.D. Roberts: Surface energy and the contact of elastic solids, Proc. R. Soc. A 324, 301 (1971)

    Google Scholar 

  19. B.V. Derjaguin, V.M. Muller, Y.P. Toporov: Effect of contact deformations on the adhesion of particles, J. Colloid Interface Sci. 53, 314 (1975)

    Google Scholar 

  20. D. Tabor: Surface forces and surface interactions, J. Colloid Interface Sci. 58, 2–13 (1977)

    Google Scholar 

  21. D. Maugis: Adhesion of spheres: The JKR-DMT transition using a Dugdale model, J. Colloid Interface Sci. 150, 243–269 (1992)

    Google Scholar 

  22. R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope, J. Vac. Sci. Technol. B 14, 1289–1295 (1996)

    Google Scholar 

  23. M. Enachescu, R.J.A.V.D. Oetelaar, R.W. Carpick, D.F. Ogletree, C.F.J. Flipse, M. Salmeron: Observation of proportionality between friction and contact area at the nanometer scale, Tribol. Lett. 7, 73–78 (1999)

    Google Scholar 

  24. M.A. Lantz, S.J. O’Shea, M.E. Welland, K.L. Johnson: Atomic force microscope study of contact area and friction on NbSe2, Phys. Rev. B 55, 10776–10785 (1997)

    Google Scholar 

  25. J.F. Archard: Contact and rubbing of flat surfaces, J. Appl. Phys. 24, 981–988 (1953)

    Google Scholar 

  26. J.F. Archard: Elastic deformation and the laws of friction, Proc. R. Soc. A 243, 190–205 (1957)

    Google Scholar 

  27. J.A. Greenwood, J.B.P. Williamson: Contact of nominally flat surfaces, Proc. R. Soc. A 295, 300–319 (1966)

    Google Scholar 

  28. K.N.G. Fuller, D. Tabor: The effect of surface roughness on the adhesion of elastic solids, Proc. R. Soc. A 345, 327 (1975)

    Google Scholar 

  29. D. Maugis: On the contact and adhesion of rough surfaces, J. Adhes. Sci. Technol. 10, 161 (1996)

    Google Scholar 

  30. G. Carbone, F. Bottiglione: Asperity contact theories: Do they predict linearity between contact area and load?, J. Mech. Phys. Solids 56, 2555–2572 (2008)

    MATH  Google Scholar 

  31. L. Pastewka, M.O. Robbins: Contact between rough surfaces and a criterion for macroscopic adhesion, Proc. Natl. Acad. Sci. USA 111, 3298–3303 (2014)

    Google Scholar 

  32. B.N.J. Persson: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion, J. Phys.: Condens. Matter 17, 1071–1142 (2005)

    Google Scholar 

  33. J.I. McCool: Comparison of models for the contact of rough surfaces, Wear 107, 37 (1986)

    Google Scholar 

  34. M.G. Lim, J.C. Chang, D.P. Schultz, R.T. Howe, R.M. White: Polysilicon microstructures to characterize static friction. In: Proc. IEEE MEMS Workshop, Napa Valley (1990) pp. 82–88

    Google Scholar 

  35. W.R. Ashurst, Y.J. Jang, L. Magagnin, C. Carraro, M.M. Sung, R. Maboudian: Nanometer-thin titania films with SAM-level stiction and superior wear resistance for reliable MEMS performance. In: Proc. 17th IEEE Int. Conf. MEMS (2004) pp. 153–156

    Google Scholar 

  36. W.R. Ashurst, C. Yau, C. Carraro, C. Lee, R.T. Howe, R. Maboudian: Alkene based monolayer films as anti-stiction coatings for polysilicon MEMS, Sens. Actuators A 9, 239 (2001)

    Google Scholar 

  37. D.C. Senft, M.T. Dugger: Friction and wear in surface-micromachined tribological test devices, Proc. SPIE 3224, 31–38 (1997)

    Google Scholar 

  38. W.M.V. Spengen, J.W.M. Frenken: The Leiden tribometer: Real time dynamic friction loop measurements with an on-chip tribometer, Tribol. Lett. 28, 149–156 (2007)

    Google Scholar 

  39. N.R. Tas, C. Gui, M. Elwenspoek: Static friction in elastic adhesion contacts in MEMS, J. Adhes. Sci. Technol. 17, 547 (2003)

    Google Scholar 

  40. S.J. Timpe, K. Komvopoulos: The effect of adhesion on the static friction properties of sidewall contact interfaces of microelectromechanical devices, J. Microelectromech. Syst. 15, 1612 (2006)

    Google Scholar 

  41. S.J. Timpe, K. Komvopoulos: Microdevice for measuring friction and adhesion properties of sidewall contact interfaces of microelectromechanical systems, Rev. Sci. Instrum. 78, 065106-1–065106-9 (2007)

    Google Scholar 

  42. W.R. Ashurst, M.P. de Boer, C. Carraro, R. Maboudian: An investigation of sidewall adhesion in MEMS, Appl. Surf. Sci. 212/213, 735–741 (2003)

    Google Scholar 

  43. R.W. Carpick, D.F. Ogletree, M. Salmeron: A general equation for fitting contact area and friction vs load measurements, J. Colloid Interface Sci. 211, 395–400 (1997)

    Google Scholar 

  44. G.J. Leggett: Friction force microscopy of self-assembled monolayers: Probing molecular organisation at the nanometre scale, Anal. Chim. Acta 479, 17–38 (2003)

    Google Scholar 

  45. Y.L. Chen, J.N. Israelachvili: Effects of ambient conditions on adsorbed surfactant and polymer monolayers, J. Phys. Chem. 96, 7752 (1992)

    Google Scholar 

  46. J.B.D. Green, M.T. McDermott, M.D. Porter, L.M. Siperko: Nanometer-scale mapping of chemically distinct domains at well-defined organic interfaces using frictional force microscopy, J. Phys. Chem. B 99, 10960–10965 (1995)

    Google Scholar 

  47. G.Y. Liu, P. Fenter, C.E.D. Chidsey, D.F. Ogletree, P. Eisenberger, M. Salmeron: An unexpected packing of fluorinated n-alkane thiols on Au(111): A combined atomic-force microscopy and x-ray diffraction study, J. Chem. Phys. 101, 4301 (1994)

    Google Scholar 

  48. M.T. McDermott, J.B.D. Green, M.D. Porter: Scanning force microscopic exploration of the lubrication capabilities of n-alkanethiolate monolayers chemisorbed at gold: Structural basis of microscopic friction and wear, Langmuir 13, 2504–2510 (1997)

    Google Scholar 

  49. E.W.V.D. Vegte, G. Hadziioannou: Scanning force microscopy with chemical specificity: An extensive study of chemically specific tip–surface interactions and the chemical imaging of surface functional groups, Langmuir 13, 4357–4368 (1997)

    Google Scholar 

  50. Y. Liu, D.F. Evans, Q. Song, D.W. Grainger: Structure and frictional properties of self-assembled surfactant monolayers, Langmuir 12, 1235–1244 (1996)

    Google Scholar 

  51. B.D. Beake, G.J. Leggett: Friction and adhesion of mixed self-assembled monolayers studied by chemical force microscopy, Phys. Chem. Chem. Phys. 1, 3345–3350 (1999)

    Google Scholar 

  52. H.I. Kim, T. Koini, T.R. Koini, S.S. Perry: Systematic studies of the frictional properties of fluorinated monolayers with atomic force microscopy: Comparison of CF3- and CH3- terminated films, Langmuir 13, 7192–7196 (1997)

    Google Scholar 

  53. E.W.V.D. Vegte, A. Subbotin, G. Hadziioannou, P.R. Ashton, J.A. Preece: Nanotribological properties of unsymmetrical n-dialkyl sulfide monolayers on gold: Effect of chain length on adhesion, friction, and imaging, Langmuir 16, 3249–3256 (2000)

    Google Scholar 

  54. E.D. Reedy: Thin-coating contact mechanics with adhesion, J. Mater. Res. 21, 2660–2668 (2006)

    Google Scholar 

  55. E.D. Reedy: Contact mechanics for coated spheres that includes the transition from weak to strong adhesion, J. Mater. Res. 22, 2617–2622 (2007)

    Google Scholar 

  56. W.R. Ashurst, C. Yau, C. Carraro, R.M.R. Maboudian, M.T. Dugger: Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: A comparison to the octadecyltrichlosilane self-assembled monolayer, J. Microelectromech. Syst. 10, 41 (2001)

    Google Scholar 

  57. A.D. Corwin, M.P. de Boer: Effect of adhesion on dynamic and static friction in surface micromachining, Appl. Phys. Lett. 84, 2451 (2004)

    Google Scholar 

  58. A.D. Corwin, M.D. Street, R.W. Carpick, W.R. Ashurst, M.P. de Boer: Pre-sliding tangential deflections can govern the friction of MEMS devices. In: Proc. ASME/STLE Jt. Int. Tribol. Conf., Long Beach (2004)

    Chapter  Google Scholar 

  59. E.E. Flater, A.D. Corwin, M.P. de Boer, M.J. Shaw, R.W. Carpick: In-situ wear studies of surface micromachined interfaces subject to controlled loading, Wear 260, 580–593 (2006)

    Google Scholar 

  60. C. Carraro, O.W. Yauw, M.M. Sung, R. Maboudian: Observation of three growth mechanisms in self-assembled monolayers, J. Phys. Chem. B 102, 4441 (1998)

    Google Scholar 

  61. E.E. Flater, W.R. Ashurst, R.W. Carpick: Nanotribology of octadecyltrichlorosilane monolayers and silicon: Self-mated versus unmated interfaces and local packing density effects, Langmuir 23, 9242–9252 (2007)

    Google Scholar 

  62. B.G. Bush, F.W. DelRio, J. Opatkiewiez, R. Maboudian, C. Carraro: Effect of formation temperature and roughness on surface potential of octadecyltrichlorosilane self-assembled monolayer on silicon surfaces, J. Phys. Chem. A 111, 12339–12343 (2007)

    Google Scholar 

  63. E.E. Flater, W.R. Ashurst, R.W. Carpick: Nanotribology of octadecyltrichlorosilane monolayers and silicon: Self-mated versus unmated interfaces and local packing density effects, Langmuir 23, 9242–9252 (2007)

    Google Scholar 

  64. J.H. Dieterich: Time-dependent friction in rocks, J. Geophys. Res. 77, 3690 (1972)

    Google Scholar 

  65. J.H. Dieterich, B. Kilgore: Implications of fault constitutive properties for earthquake prediction, Proc. Natl. Acad. Sci. USA 93, 3787 (1996)

    Google Scholar 

  66. F. Heslot, T. Baumberger, B. Perrin, B. Caroli, C. Caroli: Creep, stick-slip and dry-friction dynamics: Experiments and a heuristic model, Phys. Rev. E 49, 4973 (1994)

    Google Scholar 

  67. J.R. Rice, A.L. Ruina: Stability of frictional slipping, J. Appl. Mech. 50, 343–349 (1983)

    MATH  Google Scholar 

  68. A.L. Ruina: Slip instability and state variable friction laws, J. Geophys. Res. 88, 359 (1983)

    Google Scholar 

  69. P. Berthoud, T. Baumberger, C. G’Sell, J.-M. Hiver: Physical analysis of the state- and rate-dependent friction law: Static friction, Phys. Rev. B 59, 14313 (1999)

    Google Scholar 

  70. T. Baumberger, C. Caroli, B. Perrin, O. Ronsin: Nonlinear analysis of the stick-slip bifurcation in the creep-controlled regime of dry friction, Phys. Rev. E 51, 4005–4010 (1995)

    Google Scholar 

  71. Y.F. Lim, K. Chen: Dynamics of dry friction: A numerical investigation, Phys. Rev. E 58, 5637–5642 (1998)

    Google Scholar 

  72. J.T. Desaguliers: A Course of Experimental Philosophy, Vol. 1 (London 1734)

    Google Scholar 

  73. J.H. Dieterich: Time-dependent friction and the mechanics of stick-slip, Pure Appl. Geophys. 116, 790–806 (1978)

    Google Scholar 

  74. J. Rice, A. Ruina: Stability of steady frictional slipping, J. Appl. Mech. 50, 343–349 (1983)

    MATH  Google Scholar 

  75. S.S. Shroff, M.P. de Boer: Constant velocity high force microactuator for stick-slip testing of micromachined interfaces, J. Microelectromech. Syst. 24, 1868–1877 (2015)

    Google Scholar 

  76. E.T. Enikov, S.S. Kedar, K.V. Lazarov: Analytical model for analysis and design of V-shaped thermal microactuators, J. Microelectromech. Syst. 14, 788–798 (2005)

    Google Scholar 

  77. R. Hickey, D. Sameoto, T. Hubbard, M. Kujath: Time and frequency response of two-arm micromachined thermal actuators, J. Micromech. Microeng. 13, 40 (2003)

    Google Scholar 

  78. L. Que, J.S. Park, Y.B. Gianchandani: Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices, J. Microelectromech. Syst. 10, 247 (2001)

    Google Scholar 

  79. D.A. Bristow, M. Tharayil, A.G. Alleyne: A survey of iterative learning control, IEEE Control Syst. 26, 96–114 (2006)

    Google Scholar 

  80. S.S. Shroff, M.P. de Boer: Full assessment of micromachine friction within the rate-state framework: Experiments, Tribol. Lett. (2016) doi:10.1007/511249-016-0718-3

  81. M.E. Saleh, J.L. Beuth, Y.N. Picard, M.P. de Boer: In situ platform for isothermal testing of thin-film mechanical properties using thermal actuators, J. Microelectromech. Syst. 24, 2008–2018 (2015)

    Google Scholar 

  82. M.G. Hankins, P.J. Resnick, P.J. Clews, T.M. Mayer, D.R. Wheeler, D.M. Tanner, R.A. Plass: Vapor deposition of amino-functionalized self-assembled monolayers on MEMS, Proc. SPIE 4980, 238–247 (2003)

    Google Scholar 

  83. A.D. Corwin, M.P. de Boer: Frictional aging and sliding bifurcation in monolayer-coated micromachines, J. Microelectromech. Syst. 18, 250–262 (2009)

    Google Scholar 

  84. J.S. Courtney-Pratt, E. Eisner: The effect of tangential force on the contact of metallic bodies, Proc. R. Soc. A 238, 529 (1957)

    Google Scholar 

  85. F.W. DelRio, M.P. de Boer, J.A. Knapp, E.D. Reedy, P.J. Clews, M.L. Dunn: The role of van der Waals forces in adhesion of micromachined surfaces, Nat. Mater. 4, 629–634 (2005)

    Google Scholar 

  86. S.S. Shroff, M.P. de Boer: Direct observation of the velocity contribution to friction in monolayer-coated micromachines, Extreme Mech. Lett. 8, 184–190 (2016)

    Google Scholar 

  87. T. Hatano: Rate and state friction law as derived from atomistic processes at asperities, arXiv preprint arXiv:1512.05078 (2015)

    Google Scholar 

  88. S.S. Shroff, M.P. de Boer: Full assessment of micromachine friction within the rate-state framework: Theory and validation, Tribol. Lett. (2016) doi:10.1007/511249-016-0724-5

  89. N. Lapusta, J.R. Rice: Nucleation and early seismic propagation of small and large events in a crustal earthquake model, J. Geophys. Res.: Solid Earth (2003) doi:10.1029/2001JB000793

  90. A. Epstein, S.D. Senturia: Macro power from micro machinery, Science 276, 1211 (1997)

    Google Scholar 

  91. L.G. Fréchette, S.A. Jacobson, K.S. Breuer, F.F. Ehrich, R. Ghodssi, R. Khanna, C.W. Wong, X. Zhang, M.A. Schmidt, A.H. Epstein: High-speed microfabricated silicon turbomachinery and fluid film bearings, J. Microelectromech. Syst. 14, 141–152 (2005)

    Google Scholar 

  92. N. Ghalichechian, A. Modafe, M.I. Beyaz, R. Ghodssi: Design, fabrication, and characterization of a rotary micromotor supported on microball bearings, J. Microelectromech. Syst. 17, 632–642 (2008)

    Google Scholar 

  93. J. Winters: Rolling with it: Researchers are reducing friction in MEMS devices using a very old solution in a new size, Mech. Eng.-CIME 131, 22–27 (2009)

    Google Scholar 

  94. M. McCarthy, C.M. Waits, R. Ghodssi: Dynamic friction and wear in a planar-contact encapsulated microball bearing using an integrated microturbine, J. Microelectromech. Syst. 18, 263–273 (2009)

    Google Scholar 

  95. B. Hanrahan, S. Misra, C.M. Waits, R. Ghodssi: Wear mechanisms in microfabricated ball bearing systems, Wear 326, 1–9 (2015)

    Google Scholar 

  96. C. Chisholm, H. Bei, M. Lowry, J. Oh, S.S. Asif, O. Warren, Z. Shan, E.P. George, A.M. Minor: Dislocation starvation and exhaustion hardening in Mo alloy nanofibers, Acta Mater. 60, 2258–2264 (2012)

    Google Scholar 

  97. H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S.S. Asif, O. Warren, Z. Shan, J. Wu, A. Minor: Mechanics and dynamics of the strain-induced M1–M2 structural phase transition in individual VO2 nanowires, Nano Lett. 11, 3207–3213 (2011)

    Google Scholar 

  98. J. Liu, J.K. Notbohm, R.W. Carpick, K.T. Turner: Method for characterizing nanoscale wear of atomic force microscope tips, ACS Nano 4, 3763–3772 (2010)

    Google Scholar 

  99. T.D.B. Jacobs, B. Gotsmann, M.A. Lantz, R.W. Carpick: On the application of transition state theory to atomic-scale wear, Tribol. Lett. 39, 257–271 (2010)

    Google Scholar 

  100. A. Desai, M. Haque: A novel MEMS nano-tribometer for dynamic testing in-situ in SEM and TEM, Tribol. Lett. 18, 13–19 (2005)

    Google Scholar 

  101. T. Ishida, Y. Nakajima, K. Kakushima, M. Mita, H. Toshiyoshi, H. Fujita: Design and fabrication of MEMS-controlled probes for studying the nano-interface under in situ TEM observation, J. Micromech. Microeng. 20, 075011 (2010)

    Google Scholar 

  102. T. Sato, T. Ishida, L. Jalabert, H. Fujita: Development of MEMS-in-TEM setup to observe shear deformation for the study of nano-scale friction, Tribol. Online 6, 226–229 (2011)

    Google Scholar 

  103. J.J. Yao: RF MEMS from a device perspective, J. Micromech. Microeng. 10, R9 (2000)

    Google Scholar 

  104. C. Keimel, G. Claydon, B. Li, J.N. Park, M.E. Valdes: Microelectromechanical systems-based switches for power applications, IEEE Trans. Ind. Appl. 48, 1163–1169 (2012)

    Google Scholar 

  105. T.-J.K. Liu, D. Markovic, V. Stojanovic, E. Alon: The relay reborn, IEEE Spectrum 49(31), 39–43 (2012)

    Google Scholar 

  106. M. Spencer, F. Chen, C.C. Wang, R. Nathanael, H. Fariborzi, A. Gupta, H. Kam, V. Pott, J. Jeon, T.J.K. Liu, D. Markovic, E. Alon, V. Stojanovic: Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications, IEEE J. Solid – State Circuits 46, 308–320 (2011)

    Google Scholar 

  107. S. Narendra, V. De, S. Borkar, D.A. Antoniadis, A.P. Chandraskasan: Full-chip subthreshold leakage power prediction and reduction techniques for sub-0.18 μm CMOS, IEEE J. Solid – State Circuits 39, 501–510 (2004)

    Google Scholar 

  108. D.A. Czaplewski, G.A. Patrizi, G.M. Kraus, J.R. Wendt, C.D. Nordquist, S.L. Wolfley, M.S. Baker, M.P. de Boer: A nanomechanical switch for integration with CMOS logic, J. Micromech. Microeng. 19, 085003 (2009)

    Google Scholar 

  109. U. Zaghloul, G. Piazza: Sub-1-volt piezoelectric nanoelectromechanical relays with millivolt switching capability, IEEE Electron Device Lett. 35, 669–671 (2014)

    Google Scholar 

  110. G.M. Rebeiz, J.B. Muldavin: RF MEMS switches and switch circuits, IEEE Microw. Mag. 35, 59–71 (2001)

    Google Scholar 

  111. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami: Internet of things (IoT): A vision, architectural elements, and future directions, Future Gener. Comput. Syst. 29, 1645–1660 (2013)

    Google Scholar 

  112. V. Brand, M.S. Baker, M.P. de Boer: Impact of contact materials and operating conditions on stability of micromechanical switches, Tribol. Lett. 51, 341–356 (2013)

    Google Scholar 

  113. R.A. Coutu Jr., P.E. Kladitis, K.D. Leedy, R.L. Crane: Selecting metal alloy contact materials for MEMS switches, J. Micromech. Microeng. 14, 1157–1164 (2004)

    Google Scholar 

  114. H.W. Hermance, T.F. Egan: Organic deposits on precious metal contacts, Bell Syst. Tech. J. 37, 739–776 (1958)

    Google Scholar 

  115. H.P. Koidl, W.F. Rieder, Q.R. Salzmann: Parameters influencing the contact compatibility of organic vapours in telecommunication and control switches. In: Proc. 44th IEEE Holm Conf. Electr. Contacts (1998) pp. 220–225

    Google Scholar 

  116. V. Brand, M.S. Baker, M.P. de Boer: Contamination thresholds of Pt- and RuO2-coated ohmic switches, J. Microelectromech. Syst. 22, 1248–1250 (2013)

    Google Scholar 

  117. K. Hinohara: Reed switches. In: Electrical Contacts: Principles and Applications, ed. by P.G. Slade (CRC, Boca Raton 1999) pp. 535–572

    Google Scholar 

  118. V. Brand, M.P. de Boer: Oxygen-induced graphitization of amorphous carbon deposit on ohmic switch contacts improves their electrical conductivity and protects them from wear, J. Micromech. Microeng. 24, 095029 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF CMMI Grants 1030322, 1030278 and 1334572. SSS was supported by the NSF Graduate Research Fellowship Program. Many of the MEMS devices discussed were fabricated by Sandia National Laboratories, Albuquerque, NM, USA. Certain commercial equipment, instruments, or materials are identified in this chapter in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Editor information

Bharat Bhushan

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

de Boer, M.P., Shroff, S.S., DelRio, F.W., Ashurst, W.R. (2017). Friction and Wear in Micro- and Nanomachines. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54357-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54357-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54355-9

  • Online ISBN: 978-3-662-54357-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics