Skip to main content

Monitoring Tissue Gas Tensions in Critical Illness

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 2001

Part of the book series: Yearbook of Intensive Care and Emergency Medicine 2001 ((YEARBOOK,volume 2001))

Abstract

For the major part of the previous century, bedside assessment of tissue perfusion and oxygenation was largely a clinical exercise. The ability to measure arterial blood gases and pH became a clinical reality only in the 1950s. This provided valuable information concerning gas exchange and acid-base homeostasis. However, it soon became apparent that blood gases alone provided an inadequate window through which to fully assess tissue well being. Measurement of oxygen tensions further down in the oxygen cascade did not evolve for a further 40 years, and tissue carbon dioxide measurement came into prominence only in the 1980s. Present day monitoring of tissue oxygenation incorporates many technological advances in electrode miniaturization, fiberoptics and spectrophotometry [1]. Some milestones, culminating in present day measuring systems, are outlined in Table 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Severinghaus JW, Astrup PB (1987) History of blood gas analysis. Int Anesthesiol Clin 25:1–115

    Article  PubMed  CAS  Google Scholar 

  2. Johnson BA, Weil MH (1991) Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon dioxide excesses. Crit Care Med 19:1432–1438

    Article  PubMed  CAS  Google Scholar 

  3. Marik PE (1993) Gastric intramucosal pH. A better predictor of multiorgan dysfunction syndrome and death than oxygen-derived variables in patients with sepsis. Chest 104:225–229

    CAS  Google Scholar 

  4. Dantzker DR (1993) Adequacy of tissue oxygenation. Crit Care Med (Suppl) 21: S40–S43

    Article  PubMed  CAS  Google Scholar 

  5. Rosser DM, Stidwill RP, Jacobson D, Singer M (1995) Oxygen tension in the bladder epithelium rises in both high and low cardiac output endotoxemic sepsis. J Appl Physiol 79:1878–1882

    PubMed  CAS  Google Scholar 

  6. Riddington D, Venkatesh B, Clutton-Brock T, Bion J (1994) Measuring carbon dioxide tension in sahne and alternative solutions: quantification of bias and precision in two blood gas analyzers Crit Care Med 22:96–100

    PubMed  CAS  Google Scholar 

  7. Takala J, Parviainen I, Siloaho M, Ruokonen E, Hamalainen E (1994) Saline PCO2 is an important source of error in the assessment of gastric intramucosal pH. Crit Care Med 22:1877–1879

    PubMed  CAS  Google Scholar 

  8. Venkatesh B, Boots RJ (1997) Carbon dioxide and oxygen pressure measurements in the cerebrospinal fluid in a conventional blood gas analyser: Analysis of bias and precision. J Neurol Sci 147:5–8

    Article  PubMed  CAS  Google Scholar 

  9. Venkatesh B, Morgan J, Jones RD, Clague A (1998) Validation of air as an equilibration medium in gastric tonometry: an in vitro evaluation of two techniques for measuring air PCO2. Anaesth Intensive Care 26:46–50

    PubMed  CAS  Google Scholar 

  10. Venkatesh B, Boots RJ, Wallis SC (1999) Accuracy of pleural fluid pH and PCO2 measurement in a blood gas analyser. Analysis of bias and precision. Scand J Clin Lab Invest 59:619–626

    Article  PubMed  CAS  Google Scholar 

  11. Kautsky H (1939) Quenching of luminiscence by oxygen. Trans Faraday Soc 35:216–219

    Article  CAS  Google Scholar 

  12. Opitz N, Lubbers DW (1987) Theory and development of fluorescence-based optochemical oxygen sensors: oxygen optodes. Int Anesthesiol Clin 25:177–197

    Article  PubMed  CAS  Google Scholar 

  13. Lubbers D, Opitz N (1975) Die PCO2/PO2-optode: Eine neue PCO2-bzw. PO2-Messonde zur Messung des PCO2 oder PO2 von Gasen und Flüssigkeiten. Z Naturforsch 30:532–533

    CAS  Google Scholar 

  14. Stow R, Randall B (1954) Electrical measurement of the PCO2 of blood. Am J Physiol 179: 678–681

    Google Scholar 

  15. Clark LC (1956) Monitor and control of blood and tissue oxygen measurements. Trans Am Soc Artif Intern Organs 2:41–48

    Google Scholar 

  16. Tremper KK, Barker SJ (1989) The optode: Next generation in blood gas measurement. Crit Care Med 17:481–482

    Article  PubMed  CAS  Google Scholar 

  17. Hopf HW, Hunt TK (1994) Comparison of Clark electrode and optode for measurement of tissue oxygen tension. Adv Exp Med Biol 345:841–847

    Article  PubMed  CAS  Google Scholar 

  18. Venkatesh B, Clutton-Brock TH, Hendry SP (1995) The continuous measurement of arterial blood gas chemistry using a combined electrochemical and a spectrophotometric sensor. J Med EngTechnol 18: 165–168

    Google Scholar 

  19. Venkatesh B, Clutton-Brock TH, Hendry SP (1995) Evaluation of the Paratrend 7 intravaascular blood gas monitor during cardiac surgery. Comparison with an in-line blood gas monitor during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 9:412–419

    Article  PubMed  CAS  Google Scholar 

  20. Hoffman WE, Charbel FT, Edelman G, Ausman JI (1997) Brain tissue oxygenation in patients with cerebral occlusive disease and arteriovenous malformations. Br J Anaesth 78:169–171

    PubMed  CAS  Google Scholar 

  21. Hoffman WE, Charbel FT, Edelman G, Ausman JI (1997) Brain tissue gases and pH during arteriovenous malformation resection. Neurosurgery 40:294–300

    Article  PubMed  CAS  Google Scholar 

  22. Hoffman WE, Charbel FT, Edelman G, Ausman JI (1996) Brain tissue oxygen pressure, carbon dioxide pressure, and pH during hypothermic circulatory arrest. Surg Neurol 46:75–79

    Article  PubMed  CAS  Google Scholar 

  23. van Santbrink H, Maas AI, Avezaat CJ (1996) Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 38:21–31

    Article  PubMed  Google Scholar 

  24. Intaglietta M, Johnson PC, Winslow RM (1996) Microvascular and tissue oxygen distribution. Cardiovasc Res 32:632–643

    PubMed  CAS  Google Scholar 

  25. Sinaasappel M, Ince C (1996) Calibration of Pd-porphyrin phosphorescence for oxygen concentration measurements in vivo. J Appl Physiol 81:2297–2303

    PubMed  CAS  Google Scholar 

  26. Sinaasappel M, Ince C, van der Sluijs JP, Bruining HA (1994) A new phosphorimeter for the measurement of oxygen pressures using Pd-porphine phosphorescence. Adv Exp Med Biol 361:75–81

    Article  PubMed  CAS  Google Scholar 

  27. Ince C, Sinaasappel M (1999) Microcirculatory oxygenation and shunting in sepsis and shock. Crit Care Med 27:1369–1377

    Article  PubMed  CAS  Google Scholar 

  28. Lund N, Jorfeldt L, Lewis DH (1980) Skeletal muscle oxygen pressure fields in healthy human volunteers. A study of the normal state and the effects of different arterial oxygen pressures. Acta Anaesthesiol Scand 24:272–278

    Article  PubMed  CAS  Google Scholar 

  29. Kallinowski F, Zander R, Hoeckel M, Vaupel P (1990) Tumor tissue oxygenation as evaluated by computerized-pO2-histography. Int J Radiat Oncol Biol Phys 19:953–961

    Article  PubMed  CAS  Google Scholar 

  30. Murr R, Berger S, Schurer L, Peter K, Baethmann A (1994) A novel, remote-controlled suspension device for brain tissue PO2 measurements with multiwire surface electrodes. Pflugers Arch 426:348–350

    Article  PubMed  CAS  Google Scholar 

  31. Zauner A, Doppenberg E, Woodward JJ, et al (1997) Multiparametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol Res 19:265–273

    PubMed  CAS  Google Scholar 

  32. Desai VS, Weil MH, Tang W, Yang G, Bisera J (1993) Gastric intramural PCO2 during peritonitis and shock. Chest 104:1254–1248

    Article  PubMed  CAS  Google Scholar 

  33. Noe M, Weil MH, Sun S, et al (1993) Comparison of gastric luminal and gastric wall PCO2 during hemorrhagic shock. Circ Shock 40:194–199

    Google Scholar 

  34. Tang W, Weil MH, Sun S, et al (1994) Gastric intramural PCO2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. J Appl Physiol 76:572–577

    PubMed  CAS  Google Scholar 

  35. Knichwitz G, Rotker J, Brussel T, et al (1996) A new method for continuous intramucosal PCO2 measurement in the gastrointestinal tract. Anesth Analg 83:6–11

    PubMed  CAS  Google Scholar 

  36. Morgan TJ, Venkatesh B, Endre ZH (1997) Continuous measurement of gut luminal PCO2 in the rat: responses to transient episodes of graded aortic hypotension. Crit Care Med 25: 1575–1578

    Article  PubMed  CAS  Google Scholar 

  37. Makisalo HJ, Soini HO, Tapani Lalla ML, Hockerstedt KA (1988) Subcutaneous and liver tissue oxygen tension in hemorrhagic shock: an experimental study with whole blood and two colloids. Crit Care Med 16:857–861

    Article  PubMed  CAS  Google Scholar 

  38. Soini HO, Takala J, Nordin AJ, Makisalo HJ, Hockerstedt KA (1992) Peripheral and liver tissue oxygen tensions in hemorrhagic shock. Crit Care Med 20:1330–1334

    Article  PubMed  CAS  Google Scholar 

  39. Venkatesh B, Morgan T, Lipman J (2000) Subcutaneous oxygen tensions provide similar information to ileal luminal CO2 tensions in an animal model of haemorrhagic shock. Intensive Care Med 26:592–600

    Article  PubMed  CAS  Google Scholar 

  40. Hunt TK, Zederfeldt BH, Goldstick TK, Conolly WB (1967) Tissue oxygen tensions during controlled hemorrhage. Surg Forum 18:3–4

    PubMed  CAS  Google Scholar 

  41. Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27: 1225–1229

    Article  PubMed  CAS  Google Scholar 

  42. McKinley BA, Parmley CL, Butler BD (1998) Skeletal muscle PO2, PCO2, and pH in hemorrhage, shock, and resuscitation in dogs. J Trauma 44:119–127

    Article  PubMed  CAS  Google Scholar 

  43. Singer M, Rosser D, Stidwill R (1995) Bladder epithehal oxygen tension as a marker of organ perfusion. Acta Anaesthesiol Scand Suppl 107:77–80

    Article  PubMed  CAS  Google Scholar 

  44. Singer M, Millar C, Stidwill R, Unwin R (1996) Bladder epithelial oxygen tension — a new means of monitoring regional perfusion? Preliminary study in a model of exsanguination/fluid repletion. Intensive Care Med 22:324–328

    Article  PubMed  CAS  Google Scholar 

  45. Fiddian Green R (1984) A sensitive and a specific diagnostic test for intestinal ischaemia using silastic tonometers. Eur Surg J 16 (Suppl): A32 (Abst)

    Google Scholar 

  46. Heard SO, Helsmoortel CM, Kent JC, Shahnarian A, Fink MP (1991) Gastric tonometry in healthy volunteers: effect of ranitidine on calculated intramural pH. Crit Care Med 19:271–274

    Article  PubMed  CAS  Google Scholar 

  47. Bawa G, Morgan T, Venkatesh B (1999) Does enteral feeding potentially alter the PCO2 gap and pHi? Crit Care 3(Suppl 1): 87 (Abst)

    Article  Google Scholar 

  48. Venkatesh B, Morgan TJ (2000) Blood in the gastrointestinal tract delays and blunts the PCO2 response to transient mucosal ischaemia. Intensive Care Med 26:1108–1115

    Article  PubMed  CAS  Google Scholar 

  49. Morgan TJ, Venkatesh B, Endre ZH (1999) Accuracy of intramucosal pH calculated from arterial bicarbonate and the Henderson-Hasselbalch equation: assessment using simulated ischemia. Crit Care Med 27:2495–2499

    Article  PubMed  CAS  Google Scholar 

  50. Gomersall CD, Joynt GM, Freebairn RC, et al (2000) Resuscitation of critically ill patients based on the resuhs of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med 28:607–614

    Article  PubMed  CAS  Google Scholar 

  51. Schhchtig R, Mehta N, Gayowski T (1996) Tissue arterial PCO2 difference is a better marker of ischemia than intramucosal pH (pHi) or arterial pH — pHi difference. J Crit Care 11:51–56

    Article  Google Scholar 

  52. Ganong W (1997) Circulation through special regions. In: Ganong W (ed) Review of Medical Physiology. Appleton & Lange, Stamford, pp 567–585

    Google Scholar 

  53. Gottrup F, Firmin R, Chang N, Goodson WH, Hunt TK (1983) Continuous direct tissue oxygen tension measurement by a new method using an implantable silastic tonometer and oxygen po-larography. Am J Surg 146:399–403

    Article  PubMed  CAS  Google Scholar 

  54. Venkatesh B, Meacher R, Muller M, Morgan T, Eraser J (2001) Monitoring tissue oxygenation during resuscitation of major burns. J Trauma (in press)

    Google Scholar 

  55. Kitashiro S, Iwasaka T, Sugiura T, et al (1995) Monitoring urine oxygen tension during acute change in cardiac output in dogs. J Appl Physiol 79:202–204

    PubMed  CAS  Google Scholar 

  56. Kitashiro S, Sugiura T, Takayama Y, et al (1997) Clinical significance of the urinary oxygen tension in patients with ischemic heart disease. Cardiology 88:540–543

    Article  PubMed  CAS  Google Scholar 

  57. Kainuma M, Yamada M, Miyake T (1996) Continuous urine oxygen tension monitoring in patients undergoing cardiac surgery. J Cardiothorac Vasc Anesth 10:603–608

    Article  PubMed  CAS  Google Scholar 

  58. Wong DH, Weir PD, Wesley RC, et al (1993) Changes in renal vein, renal surface, and urine oxygen tension during hypoxia in pigs. J Clin Monit 9:1–4

    Article  PubMed  CAS  Google Scholar 

  59. Rennie D, Reeves P, Pappenheimer J (1958) Oxygen pressure in urine and its relation to intrarenal blood flow. Am J Physiol 195:120–132

    PubMed  CAS  Google Scholar 

  60. Boekstegers P, Weiss M (1990) Tissue oxygen partial pressure distribution within the human skeletal muscle during hypercapnia. Adv Exp Med Biol 277:525–531

    PubMed  CAS  Google Scholar 

  61. Boekstegers P, Riessen R, Seyde W (1990) Oxygen partial pressure distribution within skeletal muscle: indicator of whole body oxygen delivery in patients? Adv Exp Med Biol 277: 507–514

    PubMed  CAS  Google Scholar 

  62. Boekstegers P, Weidenhofer S, Kapsner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22:640–650

    Article  PubMed  CAS  Google Scholar 

  63. McKinley BA, Butler BD (1999) Comparison of skeletal muscle PO2, PCO2, and pH with gastric tonometric PCO2 and pH in hemorrhagic shock Crit Care Med 27:1869–1877

    Article  PubMed  CAS  Google Scholar 

  64. Nielsen PA, Secher NJ (1970) Blood flow in adipose tissue and skeletal muscle during hemorrhagic shock in heparinized dogs. Life Sci I 9:75–82

    Article  PubMed  CAS  Google Scholar 

  65. Das JB, Joshi ID, Philippart AI (1983) Continuous monitoring of pH in the tissue mode: evaluation of a miniature sensor during acidosis and tissue hypoperfusion. J Pediatric Surg 18: 914–921

    Article  CAS  Google Scholar 

  66. Sato Y, Weil MH, Tang W, et al (1997) Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol 82:558–552

    PubMed  CAS  Google Scholar 

  67. Povoas HP, Weil MH, Tang W, et al (2000) Comparisons between sublingual and gastric tonometry during hemorrhagic shock. Chest 118:1127–1132

    Article  PubMed  CAS  Google Scholar 

  68. Nakagawa Y, Weil MH, Tang W, et al (1998) Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med 157:1838–1843

    PubMed  CAS  Google Scholar 

  69. Schhchtig R, Heard SO (1999) Sublingual PCO2 measurement: the nitroglycerin of monitoring? Crit Care Med 27:1380–1381

    Article  Google Scholar 

  70. Zauner A, Doppenberg E, Soukup J, et al (1998) Extended neuromonitoring: new therapeutic opportunities? Neurol Res 20: S85–S90

    PubMed  Google Scholar 

  71. Hoffman WE, Charbel FT, Edelman G (1996) Brain tissue oxygen, carbon dioxide, and pH in neurosurgical patients at risk for ischemia. Anesth Analg 82:582–586

    PubMed  CAS  Google Scholar 

  72. Desai VS, Weil MH, Tang W, Gazmuri R, Bisera J (1995) Hepatic, renal, and cerebral tissue hyper-carbia during sepsis and shock in rats. J Lab Clin Med 125:456–461

    PubMed  CAS  Google Scholar 

  73. Nordin AJ, Makisalo H, Hockerstedt KA (1996) Failure of dobutamine to improve liver oxygenation during resuscitation with a crystalloid solution after experimental haemorrhagic shock. Eur J Surg 162:973–979

    PubMed  CAS  Google Scholar 

  74. Krogh A (1919) The supply of oxygen to the tissues and the regulation of the capillary circulation. J. Physiol 52:457–474

    PubMed  CAS  Google Scholar 

  75. Duling BR, Berne RM (1970) Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res 27: 669–678

    PubMed  CAS  Google Scholar 

  76. Duling BR, Kuschinsky W, Wahl M (1979) Measurements of the perivascular PO2 in the vicinity of the piai vessels of the cat. Pflugers Arch 383:29–34

    Article  PubMed  CAS  Google Scholar 

  77. Bohlen HG (1980) Intestinal tissue PO2 and microvascular responses during glucose exposure. Am J Physiol 238:H164–H171

    PubMed  CAS  Google Scholar 

  78. Lubbers DW, Baumgartl H (1997) Heterogeneities and profiles of oxygen pressure in brain and kidney as examples of the PO2 distribution in the living tissue. Kidney Int 51:372–380

    Article  PubMed  CAS  Google Scholar 

  79. Farhi L, Rahn H (1960) Dynamics of changes in carbon dioxide stores. Anesthesiology 21:604–614

    Article  PubMed  CAS  Google Scholar 

  80. Mahutte CK, Sassoon CSH, Muro JR, et al (1990) Progress in the development of a fluorescent intravascular blood gas system in man. J Clin Monit 6:147–157

    Article  PubMed  CAS  Google Scholar 

  81. Hunt TK, Rabkin J, Jensen JA, et al (1987) Tissue oximetry: an interim report. World J Surg 11:126–132

    Article  PubMed  CAS  Google Scholar 

  82. Venkatesh B, Boots R, Tomlinson F, Jones RD (1999) The continuous measurement of cerebrospinal fluid gas tensions in critically ill neurosurgical patients: a prospective observational study. Intensive Care Med 25:599–605

    Article  PubMed  CAS  Google Scholar 

  83. VanderMeer TJ, Wang H, Fink MP (1995) Endotoxemia causes ileal mucosal acidosis in the absence of mucosal hypoxia in a normodynamic porcine model of septic shock. Crit Care Med 23:1217–1226

    Article  PubMed  CAS  Google Scholar 

  84. Schhchtig R, Bowles SA (1994) Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol 76:2443–2451

    Google Scholar 

  85. Rozenfeld RA, Dishart MK, Tonnessen TI, Schhchtig R (1996) Methods for detecting local intestinal ischemic anaerobic metabolic acidosis by PCO2. J Appl Physiol 81:1834–1842

    PubMed  CAS  Google Scholar 

  86. Vallet B, Teboul JL, Cain S, Curtis S (2000). Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    PubMed  CAS  Google Scholar 

  87. Rahn H, Fenn W (1955) A graphical analysis of the respiratory gas exchange. The O2-CO2 diagram. American Physiological Society, Washington

    Google Scholar 

  88. Greif R, Akca O, Horn EP, Kurz A, Sessler DI (2000) Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. Outcomes Research Group. N Engl J Med 342: 161–167

    Article  PubMed  CAS  Google Scholar 

  89. Riddington DW, Venkatesh B, Boivin CM, et al (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. JAMA 275:1007–1012

    Article  PubMed  CAS  Google Scholar 

  90. Calvo C, Ruza F, Lopez-Herce J, et al (1997) Usefulness of gastric intramucosal pH for monitoring hemodynamic complications in critically ill children. Intensive Care Med 23:1268–1274

    Article  PubMed  CAS  Google Scholar 

  91. Kirton OC, Windsor J, Wedderburn R, et al (1998) Failure of splanchnic resuscitation in the acutely injured trauma patient correlates with multiple organ system failure and length of stay in the ICU. Chest 113:1064–1069

    Article  PubMed  CAS  Google Scholar 

  92. Venkatesh B, Townsend S, Boots RJ (1999) Does splanchnic ischemia occur in isolated neurotrauma? A prospective observational study. Crit Care Med 27:1175–1180

    Article  PubMed  CAS  Google Scholar 

  93. McInnes D, Belcher D (1933) A durable glass electrode. Ind Eng Chem 5:199–200

    Google Scholar 

  94. Boda D, Muranyi L (1959) Gastrotonometry: An aid to the control of ventilation during artificial respiration. Lancet 273:181–182

    Article  Google Scholar 

  95. Venkatesh B, Clutton-Brock TH, Hendry SP (1994) A multiparameter sensor for continuous intra-arterial blood gas monitoring: A prospective evaluation. Crit Care Med 22:588–594

    Article  PubMed  CAS  Google Scholar 

  96. Dahn MS, Wilson RF, Lange P, Stone A, Jacobs LA (1990) Hepatic parenchymal oxygen tension following injury and sepsis. Arch Surg 125:441–443

    PubMed  CAS  Google Scholar 

  97. Takano K, Yosii S, Hosaka S, Hashimoto R, Matsukawa T, Tada Y (1993) Muscle pH/PCO2 monitoring. J Pediatr Surg 28:1376–1379

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Venkatesh, B., Morgan, T.J. (2001). Monitoring Tissue Gas Tensions in Critical Illness. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 2001. Yearbook of Intensive Care and Emergency Medicine 2001, vol 2001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59467-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59467-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41407-0

  • Online ISBN: 978-3-642-59467-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics