Skip to main content

Changes in Postsynaptic Densities After Brain Ischemia

  • Conference paper
Maturation Phenomenon in Cerebral Ischemia IV

Summary

Synaptic dysfunction and neurological deficits resulting from transient cerebral ischemia have been observed in numerous studies. However, the molecular mechanisms for the alteration of synaptic function are not completely understood. We conducted a series of studies to investigate the molecular and morphological mechanisms underlying these synaptic alterations in the hippocampus. Rat brains were subjected to 15 min ischemia followed by 0 min, 30 min, 4, 24 and 48 h, and 7 days of reperfusion. Postsynaptic densities (PSDs) were analyzed by biochemical and electron microscopic methods. Fifteen minutes of ischemia induced a marked accumulation of ubiquitinated proteins (ubi-proteins) in PSDs at 4 h of reperfusion, indicating that proteins in PSDs are denatured during reperfusion. Several groups of ATP-binding proteins are highly accumulated in PSDs after ischemia. These include both inactive forms of protein kinases, such as P38 kinase, c-Jun kinases (JNKs), calcium/calmodulin-dependent protein kinase II (CaM- kinase II), protein kinase C and TrkB, and ATPases for membranous protein assembly such as N-ethylmaleimide-sensitive fusion protein (NSF) and heat-shock cognate protein-70 (HSC70). Two- and three-dimensional ultra-structural analyses of PSDs showed a persistent and progressive destructive change, after ischemia, in synapses from the hippocampal area CA1, an area particularly vulnerable to transient ischemia. These changes were not as pronounced in the dentate gyrus, an area relatively resistant to ischemic cell death. We conclude that transient cerebral ischemia of 15 min duration causes degenerative changes in synapses. The degenerative changes are persistent and progressive in CA1 dying neurons, starting at 2-4 h of reperfusion until cell death, but only transient in DG neurons destined to survive. The degenerative changes in synapses may contribute to synaptic dysfunction and neurological deficits after ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alves-Rodrigues A, Gregori L, Figueiredo-Pereira ME (1998) Ubiquitin, cellular inclusions and their role in neurodegeneration. Trends Neurosci 21: 516 – 520

    Article  PubMed  CAS  Google Scholar 

  2. Andersen P, Raastad M, Storm JF (1990) Excitatory synaptic integration in hippocampal pyramids and dentate granule cells. In: Cold Spring Harbor Symposium on Quantitative Biology, Vol. LV, pp 81 – 86

    Google Scholar 

  3. Angelidis CE, Lazaridis I, Pagoulatos GN (1999) Aggregation of hsp70 and hsc70 in vivo is dis¬tinct and temperature-dependent and their chaperone function is directly related to non-aggre¬gated forms. Eur J Biochem 259: 505 – 512

    Article  PubMed  CAS  Google Scholar 

  4. Aoyagi, A, Saito H, Abe K, Nishiyama N (1998) Early impairment and late recovery of synaptic transmission in the rat dentate gyrus following transient forebrain ischemia in vivo. Brain Res 799: 130 – 137

    Article  PubMed  CAS  Google Scholar 

  5. Auer RN, Jensen ML, Whishaw IQ (1989) Neurobehavioral deficits due to ischemic brain dam¬age limited to half of the CA1 sector of the hippocampus. J Neurosci 9: 1641 – 1647

    PubMed  CAS  Google Scholar 

  6. Bloom FE, Aghajanian GK (1966) Cytochemistry of synapses: a selective staining method for electron microscopy. Science 154: 1575 – 1577

    Article  PubMed  CAS  Google Scholar 

  7. Bloom FE, Aghajanian GK (1968) Fine structural and cytochemical analysis of staining of syn¬aptic junctions with phosphotungstic acid. J Ultrastructure Res 22: 361 – 375

    Article  CAS  Google Scholar 

  8. Carlin, RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynap¬tic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86: 831 – 843

    Article  PubMed  CAS  Google Scholar 

  9. Chapell TG, Welch WJ, Schlossman DM, Palter KB, Schlesinger MJ, Rothman JE (1986) Uncoat- ing ATPase is a member of the 70 kilodalton family of stress protein. Cell 45: 3 – 13

    Article  Google Scholar 

  10. Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9: 929 – 942

    Article  PubMed  CAS  Google Scholar 

  11. Crumrine RC, Dubyak G, LaManna JC (1991) Decreased protein kinase C activity during cere¬bral ischemia and after reperfusion in the adult rat. J Neurochem 55: 2001 – 2007

    Article  Google Scholar 

  12. Dalkara T, Ayaata C, Demirci M, Erdemli G Onur R (1996) Effects of cerebral ischemia on N- methyl-D-aspartate and dihydropyridine sensitive calcium currents: an electrophysiological study in the rat hippocampus in situ. Stroke 27: 127 – 133

    Article  PubMed  CAS  Google Scholar 

  13. Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79: 425 – 449

    PubMed  CAS  Google Scholar 

  14. Furukawa K, Yamana K, Kogure K (1990) Post-ischemic alterations of spontaneous activities in rat hippocampal CA1 neurons. Brain Res 530: 257 – 260

    Article  PubMed  CAS  Google Scholar 

  15. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations and imparting both stability and flexibility to synaptic function. Ann Rev Neurosci 17: 341 – 371

    Article  PubMed  CAS  Google Scholar 

  16. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spine and syn¬apses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12: 2685 – 2750

    PubMed  CAS  Google Scholar 

  17. Hu BR, Wieloch T (1994) Tyrosine phosphorylation and activation of mitogen-activated protein kinase in the rat brain following transient cerebral ischemia. J Neurochem 62: 1357 – 1367

    Article  PubMed  CAS  Google Scholar 

  18. Hu BR, Wieloch T (1995) Persistent translocation of Ca2+/calmodulin-dependent protein kinases II to synaptic junctions in the vulnerable hippocampal CA1 region following transient cerebral ischemia. J Neurochem 64: 277 – 284

    Article  PubMed  CAS  Google Scholar 

  19. Hu BR, Kamme F, Wieloch T (1995) Alterations of Ca2+/calmodulin-dependent protein kinase II and its messenger RNA in the rat hippocampus following normal and hypothermic ischemia. Neuroscience 67: 1003 – 1016

    Article  Google Scholar 

  20. Hu BR, Park M, Martone ME, Fischer WH, Ellisman MH, Zivin JA (1998) Assembly of proteins to postsynaptic densities after transient cerebral ischemia. J Neurosci 18 (2): 625 – 633

    PubMed  CAS  Google Scholar 

  21. Hu BR, Fux CM, Martone ME, Zivin JA, Ellisman MH (1999) Persistent phosphorylation of cyclic AMP responsive element-binding protein and activating transcription factor-2 transcription factors following transient cerebral ischemia in rat brain. Neuroscience 89: 437 – 452

    Article  PubMed  CAS  Google Scholar 

  22. Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1999) Stroke. Neurologic and functional recovery. The Copenhagen Stroke Study. Phys Med Rehabil Clin N Am 10: 887 – 906

    PubMed  CAS  Google Scholar 

  23. Kabakov AE, Gabai VL (1993) Protein aggregation as primary and characteristic cell reaction to various stresses. Experientia 49: 706 – 713

    Article  PubMed  CAS  Google Scholar 

  24. Kakizuka A (1998) Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet 14: 396 – 40

    Article  PubMed  CAS  Google Scholar 

  25. Kennedy MB (1994) The biochemistry of synaptic regulation in the central nervous system. Annu Rev Biochem 63: 571 – 600

    Article  PubMed  CAS  Google Scholar 

  26. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239: 57 – 69

    Article  PubMed  CAS  Google Scholar 

  27. Kirino T, Tamura A, Sato K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64: 139 – 147

    Article  CAS  Google Scholar 

  28. Klauck TM, Scott JD (1995) The postsynaptic density: a subcellular anchor for signal transduc¬tion enzymes. Cell Signal 7: 747 – 757

    Article  PubMed  CAS  Google Scholar 

  29. Martone ME, Deerinck TJ, Lamont S, Carragher BO, Hama K, Ellisman MH (1994) Serial section electron tomography: a method for three-dimensional reconstruction of large structures. Neuroimage 1: 230 – 243

    Article  PubMed  Google Scholar 

  30. Martone ME, Jones YZ, Young SJ, Ellisman MH, Zivin JA, Hu BR (1999) Modification of post¬synaptic densities after transient cerebral ischemia: A quantitative and three-dimentional ultra- structural study. J Neurosci 19: 1988 – 1997

    PubMed  CAS  Google Scholar 

  31. Nguyen VT, Bensaude O (1994) Increased thermal aggregation of proteins in ATP-depleted mammalian cells. Eur J Biochem 220: 239 – 246

    Article  PubMed  CAS  Google Scholar 

  32. Petito CK, Pulsinelli WA (1984) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes J Cereb Blood Flow Metab 4: 194 – 205

    CAS  Google Scholar 

  33. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11: 491 – 499

    Article  PubMed  CAS  Google Scholar 

  34. Robert-Lewis JM, Savage MJ, Marcy VR, Pinsker LR, Simon R (1994) Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J Neurosci 14: 3934 – 3944

    Google Scholar 

  35. Rothman JE (1996) Mechanisms of intracellular protein transport. Biol Chem 377: 407 – 410

    PubMed  CAS  Google Scholar 

  36. Siesjo BK (1988) Historical overview: calcium, ischemia, and death of brain cells. In: Van Houtte DM, Gononi S (eds) Calcium antagonists. Pharmacology and Clinical Research. Ann N YAcad Sci 522: 638 – 661

    Google Scholar 

  37. Smith ML, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjo BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. A 2-vessel occlusion model. Acta Neurol Scand 69: 385 – 401

    Article  PubMed  CAS  Google Scholar 

  38. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly- disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75: 409 – 418

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki T (1994) Protein kinases involved in the expression of long-term potentiation. Int J Bio¬chem 26: 735 – 744

    Article  CAS  Google Scholar 

  40. Tomimoto H, Yanagihara T (1992) Electron microscopic investigation of the cerebral cortex after cerebral ischemia and reperfusion in the gerbil. Brain Res 598: 87 – 97

    Article  PubMed  CAS  Google Scholar 

  41. Volpe BT, Pulsinelli WA, Tribuna J, Davis HP (1984) Behavioral performance of rats following transient forebrain ischemia. Stroke 15: 558 – 562

    Article  PubMed  CAS  Google Scholar 

  42. Wieloch T, Cardell M, Hu BR, Zivin J, Saitoh T (1991) Changes in the activity of protein kinase C and the differential subcellular redistribution of its isozymes in the rat striatum during and following transient forebrain ischemia. J Neurochem 56: 1227 – 1235

    Article  PubMed  CAS  Google Scholar 

  43. Xu ZC, Gao TM, Ren Y (1999) Neurophysiological changes associated with selective neuronal damage in hippocampus following transient forebrain ischemia. Biol Signals Recept 8: 294 – 308

    Article  PubMed  CAS  Google Scholar 

  44. Yoshimi K, Takeda M, Nishimura T, Kudo T, Nakamura Y, Tada K, Iwata N (1991) An immuno cytochemical study of MAP2 and clathrin in gerbil hippocampus after cerebral ischemia. Brain Res 560: 149 – 158

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, B.R., Martone, M.E. (2001). Changes in Postsynaptic Densities After Brain Ischemia. In: Maturation Phenomenon in Cerebral Ischemia IV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59446-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59446-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41107-9

  • Online ISBN: 978-3-642-59446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics