Skip to main content
Log in

Protein aggregation as primary and characteristic cell reaction to various stresses

  • Research Articles
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Ehrlich carcinoma and EL-4 thymoma ascites cells were subjected in vitro to heat shock, ATP depletion, oxidative stress, Ca2+ overlading and iodoacetamide treatment. After the transient stresses, Triton (X-100)-insoluble TIS) fractions were isolated from the cells and analysed by electrophoresis and immunoblotting. All stresses used caused rapid aggregation of cell proteins. This was manifested in a signficant rise in protein content in the TIS fractions. The protein increase was mostly due to and increase in the insolubility of actin, 57 kDa protein of intermediate filaments, 70 kDa heat shock protein (HSP 70), and some specific proteins whose insolubilization was a characteristic sign for each type of cell injury. Different survival rates in the cell lines after either stress corrlated well with differences in their TIS protein accretion. Possible mechanisms for stress-induced protein aggregation and its relationship with cell viability are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlesinger, M. J., J. biol. Chem.265 (1990) 12111.

    PubMed  Google Scholar 

  2. Gething, M. J., and Sambrook, J., Nature355 (1992) 33.

    PubMed  Google Scholar 

  3. Haveman, J., Li, G. C., Mak, J. Y., and Kipp, J. B. A., Int. J. Radiat. Biol.50 (1986) 51.

    Google Scholar 

  4. Laszlo, A., Expl Cell Res.178 (1988) 401.

    Google Scholar 

  5. Lee, K. J., and Hahn, G. M., J. cell. Physiol.136 (1988) 411.

    PubMed  Google Scholar 

  6. Nishimura, R. M., Dwyer, B. E., Cole R., de Vellis, J., and Picard, K., Expl Cell Res.180 (1989) 276.

    Google Scholar 

  7. Mosser, D. D., Kotzbauer, P. T., Sarge, K. D., and Morimoto, R. I., Proc. naul Acad. Sci. USA87 (1990) 3748.

    Google Scholar 

  8. Sorger, P. K., Cell65 (1991) 363.

    PubMed  Google Scholar 

  9. Hightower, L. E., Cell66 191.

  10. Pinto, M., Morange, M., and Bensaude, O., J. biol. Chem.266 (1991) 13941.

    PubMed  Google Scholar 

  11. Gabai, V. L., Kabakov, A. E., and Mosin, A. F., Tissue & Cell24 (1992) 171.

    Google Scholar 

  12. Laemmli, U. K., Nature227 (1970) 680.

    PubMed  Google Scholar 

  13. Towbin, H. T., Staehelin, T., and Gordon, J., Proc. Natl. Acad. Sci. USA76 (1979) 4350.

    PubMed  Google Scholar 

  14. Gunter, T. E., and Pfeiffer, D. R., Am. J. Physiol.258 (1990) C755.

    PubMed  Google Scholar 

  15. Wachsberger, P. R., and Coss, R. A., Int. J. Hyperthermia6 (1990) 67.

    PubMed  Google Scholar 

  16. Mirabelli, F., and Orrenius, S., Archs Biochem. Biophys.264 (1988) 261.

    Google Scholar 

  17. Hinshaw, D. B., Burger, J. M., Beals, T. F., Armstrong, B. C., and Hyslop, P. A., Archs Biochem. Biophys.288 (1991) 311.

    Google Scholar 

  18. Beckmann, R. P., Lovett, M., and Welch, W. J., J. Cell Biol.117 (1992) 1137.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabakov, A.E., Gabai, V.L. Protein aggregation as primary and characteristic cell reaction to various stresses. Experientia 49, 706–710 (1993). https://doi.org/10.1007/BF01923956

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01923956

Key words

Navigation