Astrobiology pp 185-200 | Cite as

Halophilic Microorganisms



Concentrated salt solutions like salt or soda lakes, coastal lagoons or man-made salterns, inhabited by only a few forms of higher life, are dominated by prokaryotic microorganisms. Global salt deposits show that evaporation of marine salt water and the development of hypersaline habitats is an ongoing process for millions of years and providing ample time for the evolution of specialized halophilic Bacteria and Archaea. Halophiles, which require more than 0.5 M NaCl for optimal growth [1], have developed two different basic mechanisms of osmoregulatory solute accumulation to cope with ionic strength and the considerable water stress. These mechanisms allow halophiles to proliferate in saturated salt solutions and to survive entrapment in salt rock. The latter was proven by the isolation of viable halophilic Archaea from several subsurface salt deposits of Permo-Triassic age. If halophilic prokaryotes on Earth can remain in viable states for long periods of time, then it is reasonable to consider, under similar extraterrestrial environments, the existence of extraterrestrial organisms. This becomes all the more plausible, considering that halite has been found in several extraterrestrial materials. Here we consider the different mechanisms of osmoadaptation, the environment of halophiles, especially of subterranean halophilic isolates, and the relevance of microbial survival in high saline environments to astrobiology.


Fluid Inclusion Rock Salt Compatible Solute Soda Lake Salt Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.H. Reed, in: R.A. Herbert, G.A. Codd (Eds.) Microbes in extreme environments, Special publications for the Society for General Microbiology, Academic Press, London, 17, 1986, pp. 51.Google Scholar
  2. 2.
    T.E. Sweeney, C.A. Beuchat, Am. J. Physiol. 264, R469 (1993).Google Scholar
  3. 3.
    D.S. Cayley, B.A. Lewis, H.J. Guttman, M.T. Record, J. Mol. Biol. 222, 281, (1991).CrossRefGoogle Scholar
  4. 4.
    A. Oren, in: A. Balows, H.G. Trüper, M. Dworkin, W. Harder, K.H. Schleifer (Eds.) The Prokaryotes, 2nd edn., Springer Verlag, New York, NY, 1991, pp. 1893.Google Scholar
  5. 5.
    A. Oren, M. Heldal, S. Nordland, Can. J. Microbiol. 43, 588 (1997).CrossRefGoogle Scholar
  6. 6.
    L.D. Mermelstein, J.G. Zeikus in: Edited by K. Horikoshi, W.D. Grant (Eds.) Extremophiles. Microbial life in extreme environments, Wiley-Liss, New York, 1998.Google Scholar
  7. 7.
    H. Eisenberg, E.J. Wachtel, Annu. Rev. Biophys. Chem. 16, 69 (1987).CrossRefGoogle Scholar
  8. 8.
    H. Eisenberg, M. Mevarech, G. Zaccai, Adv. in Protein Chemistry 43, 1 (1992).CrossRefGoogle Scholar
  9. 9.
    D.J. Kushner, M. Kamekura, in: F. Rodriguez-Valera (Ed.) Halophilic Bacteria, Vol I, CRC Press Inc, Boca Raton, 1988, pp. 109.Google Scholar
  10. 10.
    D.E. Robertson, D. Noll, M.F. Roberts, J. Biol. Chem. 267, 14893 (1992).Google Scholar
  11. 11.
    M.C. Lai, R.P. Gunsalus, J. Bacteriol. 174, 7474 (1992).Google Scholar
  12. 12.
    A.D. Brown, Bacteriol. Rev. 40, 803 (1976).Google Scholar
  13. 13.
    P. Falkenberg, A.T. Matheson, C.F. Rollin, Biochim. Biophys. Acta 434, 474 (1976).Google Scholar
  14. 14.
    K. Lippert, E.A. Galinski, Appl. Microbiol. Biotech. 37, 61 (1992).CrossRefGoogle Scholar
  15. 15.
    G. Malin, A. Lapidot, J. Bacteriol. 178, 385 (1996).CrossRefGoogle Scholar
  16. 16.
    N. Hershkovitz, A. Oren, Y. Cohen, Appl. Environ. Microbiol. 57, 645 (1991).Google Scholar
  17. 17.
    E.A. Galinski, H.G. Trüper, FEMS Microbiol. Rev. 15, 95 (1994).CrossRefGoogle Scholar
  18. 18.
    D. Robertson, D. Noll, M.F. Roberts, J. Menaia, R.D. Boone, Appl. Environ. Microbiol. 56, 563 (1990).Google Scholar
  19. 19.
    M.C. Lai, K.R. Sowers, D.E. Robertson, M.F. Roberts, R.P. Gunsalus, J. Bacteriol. 173, 5352 (1991).Google Scholar
  20. 20.
    M.H. Sibley and J.H. Yopp, Arch. Microbiol. 149, 43, 1987.CrossRefGoogle Scholar
  21. 21.
    I. Tschichholz, Ph.D. Thesis, University of Bonn, 1994.Google Scholar
  22. 22.
    M.F. Roberts, M.C. Lai, R.P. Gunsalus, J. Bacteriol. 174, 6688 (1992).Google Scholar
  23. 23.
    J. Severin, A. Wohlfarth, E.A. Galinski, J. Gen. Microbiol. 138, 1629 (1992).Google Scholar
  24. 24.
    P. Peters, E.A. Galinski, H.G. Trüper, FEMS Microbiol. Lett. 71, 157 (1990).CrossRefGoogle Scholar
  25. 25.
    P. Louis, E.A. Galinski, Microbiology 143, 1141 (1997).CrossRefGoogle Scholar
  26. 26.
    K. Göller, A. Ofer, E.A. Galinski, FEMS Microbiol. Lett. 161, 293 (1998).CrossRefGoogle Scholar
  27. 27.
    K. Göller, M. Stein, E.A. Galinski, H.J. Kunte, 21st Congress of the European Society for Comparative Physiology and Biochemistry, CBP 126/A Suppl.l, 2000, pp. 61.Google Scholar
  28. 28.
    R. Regev, I. Peri, H. Gilboa, Y. Avi-Dor, Arch. Biochem. Biophys. 278, 106 (1990).CrossRefGoogle Scholar
  29. 29.
    P. Peters, E. Tel-Or, H.G. Trüper, J. Gen. Microbiol. 138, 1993 (1992).Google Scholar
  30. 30.
    D. Cánovas, C. Vargas, L.N. Csonka, A. Ventosa, J.J. Nieto, J. Bacteriol. 178, 7221 (1996).Google Scholar
  31. 31.
    M. Jebbar, R. Talibart, K. Gloux, T. Bernard, C. Blanco, J. Bacteriol. 174, 5027 (1992).Google Scholar
  32. 32.
    H. Robert, C. LeMarrec, C. Blanco, M. Jebbar, Appl. Environ. Microbiol. 66, 509 (2000).CrossRefGoogle Scholar
  33. 33.
    M. Hagemann, S. Richter, S. Mikkat, J. Bacteriol. 179, 714 (1997).Google Scholar
  34. 34.
    K. Grammann, A. Volke, H.J. Kunte, 21st Congress of the European Society for Comparative Physiology and Biochemistry, CBP 126/A Suppl.l, 2000, pp. 84.Google Scholar
  35. 35.
    B. Kempf, E. Bremer, Arch. Microbiol. 170, 319 (1998).CrossRefGoogle Scholar
  36. 36.
    M. Saier, Jr, Microbiol. Rev. 58, 71 (1994).Google Scholar
  37. 37.
    H. Peter, B. Weil, A. Burkovski, R. Krämer, S. Morbach, J. Bacteriol. 180, 6005 (1998).Google Scholar
  38. 38.
    R. Rabus, D.L. Jack, D.J. Kelly, M.H.J. Saier, Microbiology, 145, 3431 (1999).Google Scholar
  39. 39.
    K.I. Racher, R.T. Voegele, E.V. Marshall, D.E. Culham, J.M. Wood, H. Jung, M. Bacon, M.T. Cairns, S.M. Ferguson, W.-J. Liang, P.J.F. Henderson, G. White, F.R. Hallett, Biochemistry 38, 1676 (1999).CrossRefGoogle Scholar
  40. 40.
    H.J. Kunte, R.A. Crane, D.E. Culham, D. Richmond, J.M. Wood, J. Bacteriol. 181, 1537(1999).Google Scholar
  41. 41.
    R. Rubenhagen, H. Ronsch, H. Jung, H. Krämer, S. Morbach, J. Biol. Chem. 275, 735 (2000).CrossRefGoogle Scholar
  42. 42.
    P.D. Franzmann, in: F. Rodriguez (Ed.) General and Applied Aspects of Halophilic Microorganisms, Plenum Press, New York, 1991, pp. 9.CrossRefGoogle Scholar
  43. 43.
    M.A. Zharkov, in: History of Paleozoic Salt Accumulation. Springer Verlag, Berlin, 1981.Google Scholar
  44. 44.
    G. Einsele, in: Sedimentary Basins, Springer Verlag, Berlin, 1992.Google Scholar
  45. 45.
    W. Klaus, Z. Dtsch. Geol. Ges. 105, 756 (1955).Google Scholar
  46. 46.
    W. Klaus, Carinthia II, 164/Jahrg. 84, 79, Klagenfurt (1974).Google Scholar
  47. 47.
    W.T. Holser, I.R. Kaplan, Chem. Geol. 1, 93 (1966).CrossRefGoogle Scholar
  48. 48.
    E. Pak, O. Schauberger, Verh. Geol. B-A, Jahrg 1981, 185.Google Scholar
  49. 49.
    H.J. Dombrowski, Zbl. Bakteriol. 183, Abt. I Originale, 173 (1961).Google Scholar
  50. 50.
    H.J. Dombrowski, Ann. N.Y. Acad. Sci. 108, 453 (1963).ADSCrossRefGoogle Scholar
  51. 51.
    R. Reiser, P. Tasch, Trans. Kans. Acad. Sci. 63, 31 (1960).CrossRefGoogle Scholar
  52. 52.
    A. Rippel, Arch. Mikrobiol. 6, 350 (1935).CrossRefGoogle Scholar
  53. 53.
    E. Bien, W. Schwartz, Z. Allg. Mikrobiol. 5, 185 (1965).CrossRefGoogle Scholar
  54. 54.
    P. Tasch, Univ Wichita Bulletin 39, 2 (1963).Google Scholar
  55. 55.
    F.-J. Bibo, R. Söngen, R.E. Fresenius, Kali u. Steinsalz, 8, 36 (1983).Google Scholar
  56. 56.
    A. Nehrkorn, Arch. Hyg. Bakteriol. 150, 232 (1967).Google Scholar
  57. 57.
    R.H. Vreeland, J.H. Huval, in: F. Rodríguez-Valera (Ed.) General and Applied Aspects of Microorganisms, Plenum Press, New York, 1991, pp. 53.CrossRefGoogle Scholar
  58. 58.
    C.F. Norton, T.J. McGenity, W.D. Grant, J. Gen. Microbiol. 139, 1077 (1993).Google Scholar
  59. 59.
    E.B.M. Denner, T.J. McGenity, H.-J. Busse, W.D. Grant, G Wanner, H. Stan-Lotter, Int. J. Syst. Bacteriol. 44, 774 (1994).CrossRefGoogle Scholar
  60. 60.
    H. Stan-Lotter, M. Sulzner, E. Egelseer, C. Norton, L.I. Hochstein, Orig. Life Evol. Biosph. 23, 53 (1993).ADSCrossRefGoogle Scholar
  61. 61.
    H. Stan-Lotter, C. Radax, C. Gruber, T.J. McGenity, A. Legat, G. Wanner, E.B.M. Denner, in: F. Rodriguez-Valera (Ed.) SALT 2000, 8th World Salt Symposium 2000, Amsterdam, Elsevier Science B.V., 2000, pp. 921.Google Scholar
  62. 62.
    T.J. McGenity, R.T. Gemmell, W.D. Grant, H. Stan-Lotter, Environ. Microbiol. 2, 243 (2000).CrossRefGoogle Scholar
  63. 63.
    W.D. Grant, R.T. Gemmell, T.J. McGenity, Extremophiles 2, 279 (1998).CrossRefGoogle Scholar
  64. 64.
    H. Stan-Lotter, T.J. McGenity, A. Legat, E.B.M. Denner, K. Glaser, K.O. Stetter, G. Wanner, Microbiology 145, 3565 (1999).Google Scholar
  65. 65.
    S.J. Giovannoni, T.B. Britschgi, C.L. Moyer, K.G. Field, Nature (London) 345, 60 (1990).ADSCrossRefGoogle Scholar
  66. 66.
    E.F. DeLong, Proc. Natl. Acad. Sci. USA. 89, 5685 (1992).ADSCrossRefGoogle Scholar
  67. 67.
    C. Radax, C. Gruber, N. Bresgen, H. Wieland, H. Stan-Lotter, The 3rd Internat. Congr. Extremophiles, Hamburg, Germany, 2000.Google Scholar
  68. 68.
    S. Benlloch, S.G. Acinas, A.J. Martinez-Murcia, F. Rodriguez-Valera, Hydrobiologia 329, 19(1996).CrossRefGoogle Scholar
  69. 69.
    B.J. Javor, Hypersaline Environments: Microbiology and Biogeochemistry, Springer-Verlag, Berlin, 1989.Google Scholar
  70. 70.
    R.H. Vreeland, A.F. Piselli Jr, S. McDonnough, S.S. Meyers, Extremophiles 2, 321 (1998).CrossRefGoogle Scholar
  71. 71.
    G.A. Tomlinson, L.I. Hochstein, Can. J. Microbiol. 22, 587 (1976).CrossRefGoogle Scholar
  72. 72.
    R.Y. Morita (Ed.) Bacteria in Oligotrophy Environments. Starvation-Survival-Lifestyle, Chapman and Hall, New York, 1997.Google Scholar
  73. 73.
    H.M. Lappin-Scott, J.W. Costerton, Experientia 46, 812 (1990).CrossRefGoogle Scholar
  74. 74.
    E. Roedder, American Mineralogist 69, 413 (1984).Google Scholar
  75. 75.
    H.J. Dombrowski, Natur und Museum 92, 436 (1962).Google Scholar
  76. 76.
    C.F. Norton and W.D. Grant, J. Gen. Microbiol. 134, 1365 (1988).Google Scholar
  77. 77.
    N.A. Kostrikina, I.S. Zvyagintseva, and V.I. Duda, Arch. Microbiol. 156, 344 (1991).CrossRefGoogle Scholar
  78. 78.
    A.C. Wais, Curr. Microbiol. 12, 191 (1985).CrossRefGoogle Scholar
  79. 79.
    M.J. Kennedy, S.L.Reader, M.L. Swiercynski, Microbiology 140, 2513 (1994).CrossRefGoogle Scholar
  80. 80.
    R.H.Vreeland, W.D. Rosenzweig, D.W. Powers, Nature 407, 897 (2000).ADSCrossRefGoogle Scholar
  81. 81.
    D.S. McKay, E.K. Gibson Jr, K.L. Thomas-Keprta, H. Vali, C.S. Romanek, S.J. Clemett, X.D.F. Chillier, C.R. Maechling, R.N. Zare, Science 273, 924 (1996).ADSCrossRefGoogle Scholar
  82. 82.
    R.A. Kerr, Science 273, 864 (1996).ADSCrossRefGoogle Scholar
  83. 83.
    L. Becker, D.P. Glavin, J.L. Bada, Geochim. Cosmochim. Acta 61, 475 (1997).ADSCrossRefGoogle Scholar
  84. 84.
    T.O. Stevens, in: P.S. Amy, D.L. Haldeman (Eds.) The Microbiology of the Terrestrial Deep Subsurface, CRC Lewis Publishers, Boca Raton, 1997, pp. 205.Google Scholar
  85. 85.
    P.J. Boston, M.V. Ivanov, C.P. McKay, Icarus 95, 300 (1992).ADSCrossRefGoogle Scholar
  86. 86.
    J.K. Fredrickson, D.P. Chandler, T.C. Onstott, SPIE Proc. 3111, 318 (1997).ADSCrossRefGoogle Scholar
  87. 87.
    M.C. Malin, K.S. Edgett, Science 288, 2330 (2000).ADSCrossRefGoogle Scholar
  88. 88.
    J.L. Gooding, Icarus 99, 28 (1992).ADSCrossRefGoogle Scholar
  89. 89.
    D.J.Sawyer, M.D. McGehee, J. Canepa, C.B. Moore, Meteoritics & Planetary Sci., 35, 743 (2000).ADSCrossRefGoogle Scholar
  90. 90.
    T.B. McCord, G.B. Hansen, F.P. Fanale, R.W. Carlson, D.L. Matson, T.V. Johnson, W.D. Smythe, J.K. Crowley, P.D. Martin, A. Ocampo, CA. Hibbitts, J.C. Granahan, the NIMS Team, Science 280, 1242 (1998).ADSCrossRefGoogle Scholar
  91. 91.
    M.E. Zolensky, R.J. Bodnar, E.K. Gibson, L.E. Nyquist, Y. Reese, C.Y. Shih, H. Wiesman, Science 285, 1377 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

There are no affiliations available

Personalised recommendations