Skip to main content

Sparse Grids: Recent Developments for Elliptic Partial Differential Equations

  • Conference paper
Multigrid Methods V

Abstract

Efficient discretization techniques are of crucial importance for most types of problems in numerical mathematics, starting from tasks like how to define sets of points to approximate, interpolate, or integrate certain classes of functions as good as possible, up to the numerical solution of differential equations. Introduced by Zenger in 1990 and based on hierarchical tensor product approximation spaces, sparse grids have turned out to be a very efficient approach in order to improve the ratio of invested storage and computing time to the achieved accuracy for many problems in the areas mentioned above.

In this paper, we discuss two new algorithmic developments concerning the sparse grid finite element discretization of elliptic partial differential equations. First, a method for the numerical treatment of the general linear elliptic differential operator of second order is presented which, with the help of mapping techniques, allows to tackle problems on more complicated geometries. Second, we leave the approximation space of the piecewise multilinear functions and introduce hierarchical polynomial bases of piecewise arbitrary degree that lead to a very straightforward and efficient access to an approximation of higher order on sparse grids.

Both algorithms discussed here have been designed in a unidirectional way that allows the recursive reduction of the general d-dimensional case to the simpler 1D one and, thus, the formulation of programs for arbitrary d.

This work has been supported by the Bayerische Forschungsstiftung via FORTWIHR — The Bavarian Consortium for HPSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsden, A. A., Hirt, C. W.: A simple scheme for generating general curvilinear grids. J. Comp. Phys. 11 (1973) 348–359

    Article  MATH  Google Scholar 

  2. Babuška, I., Suri, M.: The p-and h-p-versions of the finite element method: An overview. Comput. Meth. Appl. Mech. Engrg. 80 (1990) 5–26

    Article  MATH  Google Scholar 

  3. Babuska, L, Szabó, B.A., Katz, I.N.: The p-version of the finite element method. SIAM J. Num. Anal. 18 (1981) 515–545

    Article  MATH  Google Scholar 

  4. Balder, R., Zenger, C: The solution of multidimensional real Helmholtz equations on sparse grids. SIAM J. Sci.; Comp. 17 (1996) 631–646

    Article  MathSciNet  MATH  Google Scholar 

  5. Bank, R.E., Dupont, T., Yserentant, H.: The hierarchical basis multigrid method. Num. Math. 52 (1988) 427–458

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonk, T.: A new algorithm for multi-dimensional adaptive numerical quadrature. In Hackbusch, W., Wittum, G.: Adaptive Methods: Algorithms, Theory, and Applications. NNFM 46 Vieweg Braunschweig (1994)

    Google Scholar 

  7. Bungartz, H.-J.: An adaptive Poisson solver using hierarchical bases and sparse grids. In de Groen, P., Beauwens, R.: Iterative Methods in Linear Algebra. Elsevier Amsterdam (1992) 293–310

    Google Scholar 

  8. Bungartz, H.-J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, TU München (1992)

    Google Scholar 

  9. Bungartz, H.-J.: Concepts for higher order finite elements on sparse grids. In Ilin, A. V., Scott, L. R.: Proc. 3rd Int. Conf. on Spectral and High Order Methods. Houston Journal of Mathematics (1996) 159–170

    Google Scholar 

  10. Bungartz, H.-J., Griebel, M., Röschke, D., Zenger, C.: Pointwise convergence of the combination technique for Laplace’s equation. East-West J. Num. Math. 2 (1994) 21–45

    MATH  Google Scholar 

  11. Bungartz, H.-J., Griebel, M., Rüde, U.: Extrapolation, combination, and sparse grid techniques for elliptic boundary value problems. Comput. Meth. Appl. Mech. Engrg. 116 (1994) 243–252

    Article  MATH  Google Scholar 

  12. Dornseifer, T., Pflaum, C.: Discretization of elliptic partial differential equations on curvilinear bounded domains with sparse grids. Computing 56 (1996) 197–214

    Article  MathSciNet  MATH  Google Scholar 

  13. Gordon, W. J., Hall, C. A.: Construction of curvilinear coordinate systems and application to mesh generation. Int. J. Num. Meth. Eng. 7 (1973) 461–477

    Article  MathSciNet  MATH  Google Scholar 

  14. Gordon, W. J., Thiel, C: Transfinite mappings and their application to grid generation. In Thompson, J.F.: Numerical Grid Generation. North-Holland Amsterdam (1982) 171–192

    Google Scholar 

  15. Griebel, M.: Parallel multigrid methods on sparse grids. In Hackbusch, W., Trottenberg, U.: Multigrid Methods III. Int. Ser. Num. Math. 3 Birkhäuser Basel (1991) 211–221

    Google Scholar 

  16. Griebel, M.: A parallelizable and vectorizable multi-level algorithm on sparse grids. In Hackbusch, W.: Parallel Algorithms for Partial Differential Equations. NNFM 31 Vieweg Braunschweig (1991) 94–100

    Google Scholar 

  17. Griebel, M., Oswald, P.: On additive Schwarz preconditioners for sparse grid discretizations. Num. Math. 66 (1994) 449–464

    Article  MathSciNet  MATH  Google Scholar 

  18. Griebel, M., Schneider, M., Zenger, C: A combination technique for the solution of sparse grid problems. In de Groen, P., Beauwens, R.: Iterative Methods in Linear Algebra. Elsevier Amsterdam (1992) 263–281

    Google Scholar 

  19. Guo, B., Babuska, I.: The h-p-version of the finite element method (Part 1: The basic approximation results). Comput. Mech. 1 (1986) 21–41

    Article  MATH  Google Scholar 

  20. Guo, B., Babuska, L: The h-p-version of the finite element method (Part 2: General results and applications). Comput. Mech. 1 (1986) 203–220

    Article  MATH  Google Scholar 

  21. Hallatschek, K.: Fouriertransformation auf dünnen Gittern mit hierarchischen Basen. Num. Math. 63 (1992) 83–97

    Article  MathSciNet  MATH  Google Scholar 

  22. Hemker, P. W.: Sparse grid finite-volume multigrid for 3D problems. Advances in Comput. Mech. (Special issue on multiscale problems) (1994) 215–232

    Google Scholar 

  23. Hilgenfeldt, S.: Numerische Lösung der stationären Schrödingergleichung mit Finite-Element-Methoden auf dünnen Gittern. Diplomarbeit, Institut für Informatik, TU München (1994)

    Google Scholar 

  24. Knupp, P., Steinberg, S.: Fundamentals of Grid Generation. CRC Press London (1993)

    Google Scholar 

  25. Liao, G.: On harmonic maps. In Castillo, J. E.: Mathematical Aspects of Numerical Grid Generation. SIAM Philadelphia (1991)

    Google Scholar 

  26. Pflaum, C: Diskretisierung elliptischer Differentialgleichungen mit dünnen Gittern. Dissertation, Institut für Informatik, TU München (1996)

    Google Scholar 

  27. Störtkuhl, T.: Ein numerisches, adaptives Verfahren zur Lö sung der biharmonischen Gleichung auf dünnen Gittern. Dissertation, Institut für Informatik, TU München (1994)

    Google Scholar 

  28. Thompson, J. F., Thames, F. C, Mastin, C.W.: Automatic numerical generation of boundary-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies. J. Comp. Phys. 15 (1974) 299–319

    Article  MATH  Google Scholar 

  29. Yserentant, EL: On the multilevel splitting of finite element spaces. Num. Math. 49 (1986) 379–412

    Article  MathSciNet  MATH  Google Scholar 

  30. Zenger, C: Sparse grids. In Hackbusch, W.: Parallel Algorithms for Partial Differential Equations. NNFM 31 Vieweg Braunschweig (1991)

    Google Scholar 

  31. Zumbusch, G.W.: Simultaneous h-p Adaption in Multilevel Finite Elements. Shaker Aachen (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bungartz, HJ., Dornseifer, T. (1998). Sparse Grids: Recent Developments for Elliptic Partial Differential Equations. In: Hackbusch, W., Wittum, G. (eds) Multigrid Methods V. Lecture Notes in Computational Science and Engineering, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58734-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58734-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63133-0

  • Online ISBN: 978-3-642-58734-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics