Skip to main content

Abstract

Antifreeze proteins have unique effects on ice in frozen solutions. The most striking property of antifreeze proteins is their ability to prevent growth of ice crystals upon cooling and thus they produce a thermal hysteresis, i.e. a separation of the equilibrium freezing point of a solution and the temperature where an ice crystal can grow.1

Corresponding author

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeVries AL. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 1971; 172:1152–1155.

    Article  CAS  Google Scholar 

  2. Zachariassen KE. The water relations of overwintering insects. In: Lee RE Jr, Denlinger D, eds. Insects at Low Temperature. New York: Chapman Hall, 1991:47–63.

    Chapter  Google Scholar 

  3. Yeh Y, Feeney RE. Antifreeze proteins: structures and mechanisms of function. Chem Rev 1996; 96:601–617.

    Article  CAS  Google Scholar 

  4. Zachariassen KE. Physiology of cold-hardiness in insects. Physiol Rev 1985; 65:799–832.

    CAS  Google Scholar 

  5. Raymond J, DeVries AL. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 1977; 74:2589–2593.

    Article  CAS  Google Scholar 

  6. Knight CA, Cheng CC, DeVries AL. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J 1991; 59:409–418.

    Article  CAS  Google Scholar 

  7. Cheng CC, DeVries AL. The role of antifreeze glycopeptides and peptides in the freezing avoidance of cold-water fish. In: di Prisco G, ed. Life Under Extreme Conditions. Berlin Heidelberg: Springer-Verlag, 1991:1–14.

    Chapter  Google Scholar 

  8. Duman JG, Wu DW, Yeung KL, Wolf EE. Hemolymph proteins involved in the cold tolerance of terrestrial arthropods: antifreeze and ice nucleator proteins. In: Somero GN, Osmond CB, Solis CL, eds. Water and Life. Berlin, Heidelberg: Springer-Verlag, 1992:282–300.

    Chapter  Google Scholar 

  9. Zachariassen KE, DeVries AL. Effect of varying ice crystal size and sample dilution on the antifreeze activity in haemolymph of the cerambycid beetles Rhagium inquisitor. J Exp Biol 1999 (in press).

    Google Scholar 

  10. Zachariassen KE, Husby JA. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature London 1982; 298:865–867.

    Article  Google Scholar 

  11. Yeh Y, Feeney RE, Mckown RL, Warren GJ. Measurements of grain growth in the recrystallization of rapidly frozen solutions of antifreeze glycoproteins. Biopolymers 1994; 34:1495–1504.

    Article  CAS  Google Scholar 

  12. Knight CA, DeVries AL, Oolman LD. Fish antifreeze protein and the freezing and recrystallization of ice. Nature London 1984; 308:295–262.

    Article  CAS  Google Scholar 

  13. Knight CA, Hallett J, DeVries AL. Solute effects on ice recrystallization: An assessment technique. Cryobiology 1988; 25:55–60.

    Article  CAS  Google Scholar 

  14. Knight CA, Wen D, Laursen RA. Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 1995; 32:23–34.

    Article  CAS  Google Scholar 

  15. Rubinsky B, Mattioli M, Arav A, Barboni B, Fletcher GL. Inhibition of Ca2+ and K+ currents by “antifreeze” proteins. Am J Physiol 1992; 262:R542–R545.

    CAS  Google Scholar 

  16. Scholander PF, van Dam L, Kanwisher JW, Hammel HT, Gordon MS. Supercooling and osmoregulation in arctic fish. J Cell Comp Physiol 1957; 49:5–24.

    Article  CAS  Google Scholar 

  17. Ramsay, A. J. The rectal complex of the mealworm Tenebrio molitor L. Philos Trans Roy Soc Ser B 1964; 248:279–314.

    Article  Google Scholar 

  18. Grimstone AV, Mullinger AM, Ramsay JA. Further studies on the rectal complex of the meal-worm Tenebrio molitor (Coleoptera, Tenebrionidae). Philos Trans Roy Soc Sci 1968; 253:343–382.

    Article  Google Scholar 

  19. DeVries AL, Wohlschlag EE. Freezing resistance in some antarctic fishes. Science 1969; 163:1073–1075.

    Article  CAS  Google Scholar 

  20. Patterson JL, Duman JG Composition of a protein antifreeze from larvae of the beetle Tenebrio molitor J Exp Zool 1979; 210:361–367.

    Article  CAS  Google Scholar 

  21. Duman JG. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta 1994; 1206:129–135.

    Article  CAS  Google Scholar 

  22. Hon WC, Griffith M, Chong PL, Yang DSC. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol 1994; 104:971–980.

    CAS  Google Scholar 

  23. Xu H, Griffith M, Patten CL, Glick BR. Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida. Can J Microbiol 1998; 44:64–73.

    CAS  Google Scholar 

  24. Duman JG, Olsen TM. Thermal hysteresis protein-activity in bacteria, fungi and phylogentetically diverse plants. Cryobiology 1993; 30:322–328.

    Article  Google Scholar 

  25. Zettel J. Cold hardiness strategies and thermal hysteresis in collembola. Rev Ecol Biol Sol 1984; 21:189–303.

    Google Scholar 

  26. Duman JG. Subzero temperature tolerance in spiders: the role of thermal hysteresis factors. J Comp Physiol 1979; 131:347–352.

    Google Scholar 

  27. Husby JA, Zachariassen KE. Antifreeze agents in the body fluid of winter active insects and spiders. Experientia 1980; 36:963–964.

    Article  CAS  Google Scholar 

  28. Block W, Duman JG. Presence of thermal hysteresis producing antifreeze proteins in the Antarctic mite Alaskozetes antarcticus. J Exp Zool 1989; 250:229–231.

    Article  CAS  Google Scholar 

  29. Hew CL, Yang DSC. Protein interaction with ice. Eur J Biochem 1992; 203:33–42.

    Article  CAS  Google Scholar 

  30. Davies PL, Ewart KV, Fletcher GL. The diversity and distribution of fish antifreeze proteins: new insights into their origins. In: Hochachka PV, Mommsen TP, eds. Biochemistry and Molecular Biology of Fishes, vol 2. Elsevier Science Publishers BV, 1993:279–291.

    Google Scholar 

  31. Griffith M, Ewart KW. Antifreeze proteins and their potential use in frozen foods. Biotechnol Adv 1995; 13:375–402.

    Article  CAS  Google Scholar 

  32. Tyshenko MG, Doucet D, Davies PL, Walker VK. The antifreeze potential of the spruce bud-worm thermal hysteresis protein. Nature Biotechnol 1997; 15:887–890.

    Article  CAS  Google Scholar 

  33. Urrutia M, Duman JG, Knight CA. Plant thermal hysteresis proteins. Biochim Biophys Acta 1992; 1121:199–206.

    Article  CAS  Google Scholar 

  34. Griffith M, Ala P, Yang DSC, Hon WC, Moffatt BA. Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 1992; 100:593–596.

    Article  CAS  Google Scholar 

  35. Duman JG, Xu L, Neven LG, Tursman D, Wu DW. Hemolymph proteins involved in insect subzero-temperature tolerance: Ice nucleators and antifreeze proteins. In: Lee RE, Denlinger DL, eds. Insects at Low Temperature. New York: Chapman and Hall, 1991:94–127.

    Chapter  Google Scholar 

  36. Duman JG, Wu DW, Olsen TM, Urrutia M, Tursman D. Thermal-hysteresis proteins. Adv Low-Temp Biol 1993; 2:131–182.

    Google Scholar 

  37. Gehrken U. Inoculative freezing and thermal hysteresis in the adult beetles Ips acuminatus and Rhagium inquisitor. J Insects Physiol 1992; 38:519–524.

    Article  Google Scholar 

  38. Parody-Morreale A, Murphy KP, DiCera E, Fall R, DeVries AL, Gill SJ Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature London 1988; 333:782–783.

    Article  CAS  Google Scholar 

  39. Baust JG, Zachariassen KE. Seasonally active cell matrix associated ice nucleators in an insect. Cryo Lett 1983; 4:65–71.

    Google Scholar 

  40. Bremdal S, Zachariassen KE. Thermal hysteresis factors and supercooling of hibernating Rhagium inquisitor beetles. In: Sehnal F, Zabza A, Denlinger D, eds. Endocrinological Frontiers in Physiological Insect Ecology. Wrochlaw: Wrochlaw Technical University Press, 1988:187–191.

    Google Scholar 

  41. Knight CA, Duman JG. Inhibition of recrystallization of ice by insects thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 1986; 23:256–262.

    Article  CAS  Google Scholar 

  42. Payne SR, Sandford D, Harris A, Young OA. Effects of antifreeze proteins on chilled and frozen meat. Meat Science 1994; 37:429–438.

    Article  CAS  Google Scholar 

  43. Smith CE, Schwartzberg HG. Ice crystal size changes during ripening in freeze concentration. Biotech Prog 1985; 1:111–120.

    Article  CAS  Google Scholar 

  44. Carpenter JF, Hansen TN. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc Natl Acad Sci 1992; 89:8953–8957.

    Article  CAS  Google Scholar 

  45. Payne SR, Oliver JE, Upretic GC. Effect of antifreeze proteins on the motility of ram spermatozoa. Cryobiology 1994; 31:180–184.

    Article  CAS  Google Scholar 

  46. Arav A, Rubinsky B, Fletcher G, Seren E. Cryogenic protection of oocytes with antifreeze proteins. Molecular reproduction and development 1993; 36:488–493.

    Article  CAS  Google Scholar 

  47. Rubinsky B, Arav A, Hong JS, Lee CY. Freezing of mammalian livers with glycerol and antifreeze proteins. Biochem Biophys Res Comm 1994; 200:732–741.

    Article  CAS  Google Scholar 

  48. Petzel DH, DeVries AL. Effect of fish antifreeze agents on cryoprotection of red blood cells in the presence of glycerol and PVP. Cryobiology 1979; 16:585–586.

    Article  Google Scholar 

  49. Larese A, Acker J, Muldrew K, Yang H, McGann L. Antifreeze proteins induce intracellular nucleation. Cryo Lett 1996; 17:175–182.

    CAS  Google Scholar 

  50. Hincha DK, DeVries AL, Schmitt JM. Cytotoxicity of antifreeze proteins and glycoproteins to spinach thylakoid membranes - comparison with cryotoxic sugar acids. Biochim Biophys Acta 1993; 1146:258–264.

    Article  CAS  Google Scholar 

  51. Costanzo JP, Lee RE Jr, DeVries AL, Wang T, Layne JR Jr. Survival mechanisms of vertebrate ectotherms at subfreezing temperatures: applications in cryomedicine. FASEB J 1995; 9:351–352.

    CAS  Google Scholar 

  52. Grandum S, Yabe A, Tanaka M, Takemura F, Nakagomi K. Characteristics of ice slurry containing antifreeze protein for ice storage applications. J Thermophys Heat Transfer 1997; 11:461–466.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zachariassen, K.E., Lundheim, R. (1999). Applications of antifreeze proteins. In: Margesin, R., Schinner, F. (eds) Biotechnological Applications of Cold-Adapted Organisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58607-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58607-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63663-9

  • Online ISBN: 978-3-642-58607-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics