Skip to main content

Vision for Mobile Robots

  • Chapter
Image Technology

Abstract

Mobile robots operate in a wide variety of environments, and the tasks they are being designed to perform vary from the simplest pick-and-place factory jobs to space station construction, maintenance, and repair. Vision systems for mobile robots are used to help locate goal objects or locations, plan paths to the goal, avoid obstacles along the chosen path, monitor the robot’s progress along the path, locate landmarks, recognize objects, compute motion parameters, etc. The vision capability required for any robot depends heavily on its environment and its assigned tasks. A robot that works in a factory picking and placing objects whose geometry, location, and orientation are known and constant may not need any vision capabilities at all. On the other hand, a robot working autonomously in a dynamic 3D environment like space or under water, with possibly unknown objects moving with arbitrary accelerations and rotations, in the presence of humans would need complex visual perception capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Azarewicz, G. Fala, and C. Heithecker. Template-based multi-agent plan recognition for tactical situation assessment. In Proceedings of the Sixth Conference on Artificial Intelligence Applications, pp. 247-254, 1989.

    Google Scholar 

  2. N. Alvertos. Stereo camera modeling and image correspondence for three-dimensional machine vision. Technical report TR-ECE-87-18, University of Tennessee, August 1987.

    Google Scholar 

  3. Padmanabhan Anandan. Measuring visual motion from image sequences. COINS Technical Report 87-21, University of Massachusetts as Amherst, Computer and Information Science, Amherst, Mass, March 1987.

    Google Scholar 

  4. Padmanabhan Anandan. A unified perspective on computational techniques fot the measurement of visual motion. In DARPA Image Understanding Workship, pp. 719-732, February 1987.

    Google Scholar 

  5. P. Anandan. A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision, Vol 2: 283–310, 1989.

    Article  Google Scholar 

  6. Ronald C. Arkin. Cooperation without communication: Multiagent schema-based robot navigation. Journal of Robotic Systems, 3(9):351–364, 1992.

    Article  Google Scholar 

  7. Sandra L. Bartlett. USING THE EGO-MOTION COMPLEX LOGARITHMIC MAPPING FOR DYNAMIC VISION PhD thesis, The University of Michigan, Ann Arbor, MI, 1993.

    Google Scholar 

  8. J.L. Barron, D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt. Performance of optical flow techniques. Technical Report 299, Department of Computer Science, The University of Western Ontario, London, Ontario, 1992.

    Google Scholar 

  9. J.L. Barron, D.J. Fleet, S.S. Beauchemin, and T.A. Burkitt. Performance of optical flow techniques. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 236-242, 1992.

    Google Scholar 

  10. C. Braccini, G. Gamberdella, and V. Tagliasco. A model of the early stages of human visual system. Biological Cybernetics, 44:47–88, 1982.

    Article  MATH  Google Scholar 

  11. Johann Borenstein and Yoram Koren. Histogramic in-motion mapping for moblie robot obstacle avoidance. IEEE Journal of Robotics and Automation, 7(4), 1991.

    Google Scholar 

  12. Paul J. Besl and Neil D. Mckay. A method for registration of 3-D shapes. IEEE Trans, on Pattern Analysis and Machine Intelligence, 14(2):239–256, February 1992.

    Article  Google Scholar 

  13. R. Brooks, P. Maes, M. Mataric, and G. More. Lunar base construction robots. In Tsuchiura, editor, IEEE Int. Workshop on Intelligent Robots and Systems (IROS ′90), pp. 389-392, Japan, 1990.

    Google Scholar 

  14. Rodney A. Brooks. Solving the find-path problem by good representation of free space. In Proceedings of the National Conference on Artificial Intelligence (AAAI), 1982.

    Google Scholar 

  15. Rodney A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation, 2(1), 1986.

    Google Scholar 

  16. P. Cavanaugh. Size and position invariance in the visual system. Perception, 7(2):167–177, 1978.

    Article  MathSciNet  Google Scholar 

  17. P. Cavanaugh. Size invariance: reply to Schwartz. Perception, 10(4):469–474, 1981.

    Article  Google Scholar 

  18. P. Caloud, W. Chio, J. Latombe, C. LePape, and M. Yim. Indoor automation with many mobile robots. In Tsuchiura, editor, IEEE Int. Workshop on Intelligent Robots and Systems (IROS ′90), pp. 67-72, Japan, 1990.

    Google Scholar 

  19. Eugene Charniak and Robert Goodman. Plan Recognition in Stories and in Life, Uncertainty in Artificial Intelligence (5). Elsevier Science Publishers, 1990.

    Google Scholar 

  20. Eugene Charniak and Robert Goldman. A probabilistic model of plan recognition. In Proceedings Ninth National Conference on Artificial Intelligence, pp. 160-165, Anaheim, CA, July 1991. American Association for Artificial Intelligence.

    Google Scholar 

  21. Eugene Charniak. Bayesian networks without tears. AI Magazine, 12(4):50–63, Winter 1991.

    Google Scholar 

  22. Clare Congdon, Marcus Huber, David Kortenkamp, Kurt Konolige, Karen Myers, Alessandro Saffiotti, and Enrique Ruspini. CARMEL vs. flakey: A comparison of two winners. AI Magazine, 14(l):49–57, Spring 1993.

    Google Scholar 

  23. Charles Cohen and Frank Koss. A comprehensive study of three-object triangulation. In William J. Wolfe and Wendell H. Chun, editors, Mobile Robots VIL SPIE, Bellingham, Washington, 1993.

    Google Scholar 

  24. Susan E. Conry, Robert A. Meyer, and Victor R. Lesser. Multistage negotiation in distributed planning. In Alan H. Bond and Les Gasser, editors, Readings in Distributed Artificial Intelligence, pp. 367-384, Morgan Kaufman, 1988.

    Google Scholar 

  25. Philip R. Cohen and C. Raymond Perrault. Elements of a plan-based theory of speech acts. Cognitive Science, 3(3):177–212, 1979.

    Article  Google Scholar 

  26. Marco Campani and Alessandro Verri. Motion analysis from first-order properties of optical flow. Computer Vision, Graphics and Image Processing: Image Understanding, Vol 56(No l):90–107, July 1992.

    MATH  Google Scholar 

  27. G. Chaikin and C. Weiman. Log spiral grids in computer pattern recognition. Computer Graphics and Pattern Recognition, 4:197–226, 1979.

    Google Scholar 

  28. Thomas Dean, Kenneth Basye, Robert Chekaluk, Seungseok Hyun, Moises Lejter, and Margaret Randazza. Coping with uncertainty in a control system for navigation and exploration. In Proceedings of the National Conference on Artificial Intelligence (AAAI), 1990.

    Google Scholar 

  29. Edmund H. Durfee and Victor R. Lesser. Using partial global plans to coordinate distributed problem solvers. In Proceedings of the Tenth International Joint Conference on Artificial Intelligence, pp. 875-883, Milan, Italy, August 1987. (Also published in Readings in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, pp. 285-293, Morgan Kaufmann, 1988.)

    Google Scholar 

  30. Edmund H. Durfee and Victor R. Lesser. Partial global planning: A coordination framework for distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5):1167–1183, September 1991. (Special Issue on Distributed Sensor Networks).

    Article  Google Scholar 

  31. Edmund H. Durfee and Thomas A. Montgomery. A hierarchical protocol for coordinating multiagent behaviors. In Proceedings of the National Conference on Artificial Intelligence, pp. 86-93, July 1990.

    Google Scholar 

  32. R. Dutta, R. Manmatha, Edward M. Riseman, and M.A. Snyder. Issues is extracting motion parameters and depth from approximate translational motion. In Proc. DARPA Image Understanding Workshop, pp. 945-960, April 1988.

    Google Scholar 

  33. Randall Davis and Reid G. Smith. Negotiation as a metaphor for distributed problem solving. AI Memo 624, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, May 1981. (Also published in Readings in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, pp. 333-356, Morgan Kaufmann, 1988.)

    Google Scholar 

  34. Sara Fleury and Thierry Baron. Absolute external mobile robot localization using a single image. In William J. Wolfe and Wendell H. Chun, editors, Mobile Robots VIL SPIE, Bellingham, Washington, 1993.

    Google Scholar 

  35. Claude Fennema and Allan R. Hanson. Experiments in autonomous navigation. In Proceedings Image Understanding Workshop, 1990.

    Google Scholar 

  36. David J. Fleet and Allan D. Jepson. Computation of component image velocity from local phase information. International Journal of Computer Vision, 5(1):77–104, August 1990.

    Article  Google Scholar 

  37. Mark S. Fox. An organizational view of distributed systems. IEEE Transactions on Systems, Man, and Cybernetics, ll(1):70–80, January 1981. (Also published in Readings in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, pp. 140-150, Morgan Kaufmann, 1988.)

    Article  Google Scholar 

  38. Jean-Pierre Gambotto. Determining stereo correspondence and egomotion from s sequence of stereo images. In 10th International Conference on Pattern Recognition, pp. 259-262, Atlantic City, New Jersey, June 1990.

    Google Scholar 

  39. Piotr J. Gmytrasiewicz, Edmund H. Durfee, and David K. Wehe. A decision-theoretic approach to coordinating multiagent interactions. In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, August 1991.

    Google Scholar 

  40. Donald B. Gennery. A stereo vision system for an autonomous vehicle. In 5th International Joint Conference on Artificial Intelligence, volume 2, page 584, Cambridge, Massachusetts, August 1977.

    Google Scholar 

  41. M.R. Genesereth, M.L. Ginsberg, and J.S. Rosenschein. Cooperation without communications. Technical Report 81-36, Stanford Heuristic Programming Project, Computer Science Department, Stanford University, Stanford, California94305, 1984. (Also published in Readings in Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, pp. 220-226, Morgan Kaufmann, 1988.)

    Google Scholar 

  42. Bradley A. Goodman and Diane J. Litman. Plan recognition for intelligent interfaces. In Proceedings of the Sixth Conference on Artificial Intelligence Applications, pp.297-303, 1990.

    Google Scholar 

  43. Frank Glazer. Computing optic flow. In International Joint Conference on Artificial Intelligence, 1981.

    Google Scholar 

  44. Frank Glazer. Hierarchical motion detection. Technical Report COINS Technical Report 87-02, Department of Computer and Information Sciences, University of Massachusetts, 1987.

    Google Scholar 

  45. Frank Glazer, G. Reynolds, and P. Anandan. Scene matching through hierarchical correlation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 432-441, 1983.

    Google Scholar 

  46. D. Grossman. Traffic control of multiple robot vehicles. IEEE Journal of Robotics and Automation, 4(5):491–497, 1988.

    Article  Google Scholar 

  47. Marcus Huber, Clint Bidlack, David Kortenkamp, Kevin Mangis, Doug Baker, Annie Wu, and Terry Weymouth. Computer vision for CARMEL. In Mobile Robots VII, Boston, MA, November 1992. SPIE.

    Google Scholar 

  48. Marcus J. Huber, Clint Bidlack, Kevin Mangis, David Kortenkamp, L. Douglas Baker, Annie Wu, and Terry Weymouth. Computer vision for CARMEL. In William J. Wolfe and Wendell H. Chun, editors, Mobile Robots VIL SPIE, Bellingham, Washington, 1993.

    Google Scholar 

  49. Marcus J. Huber and Edmund H. Durfee. Plan recognition for real-world autonomous agents: Work in progress. In Working Notes: Applications of Artificial Intelligence to Real-World Autonomous Robots, pp. 68-75, Boston, MA, October 1992. American Association for Artificial Intelligence.

    Google Scholar 

  50. Marcus J. Huber and Edmund H. Durfee. Observational uncertainty in plan recognition among interacting robots. In Working Notes: Workshop on Dynamically Interacting Robots, Chambery, France, August 1993. International Joint Conference on Artificial Intelligence.

    Google Scholar 

  51. David J. Heeger. Optical flow using spatiotemporal filters. International Journal of Computer Vision, 1:279–302, 1988.

    Article  Google Scholar 

  52. E.C. Hildreth. Computing the velocity field along contours. In ACM Siggraphl Sigart, Interdisciplinary Workshop, Motion: Representation and Perception, pp. 26-32, 1983.

    Google Scholar 

  53. R.M. Haralick and J.S. Lee. The facet approach to optic flow. In IEEE Workshop on Computer Vision, 1986.

    Google Scholar 

  54. Ian Horswill. Polly: A vision-based artificial agent. In National Conference On Artificial Intelligence (AAAI-93), 1993.

    Google Scholar 

  55. Ian Horswill. A simple, cheap, and robust visual navigation system. In Jean-Arcady Meyer, Herbert L. Roitblat, and Stewart W. Wilson, editors, From Animals to Animats 2: Proceedings of the Second International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  56. Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203, 1981.

    Article  Google Scholar 

  57. Jia-Wei Hong, Xiaonan Tan, Brian Pinette, Richard Weiss, and Edward M. Riseman. Image-based navigation using 360 degree views. In Proceedings of the Image Understanding Workshop, 1990.

    Google Scholar 

  58. Jia-Wei Hong, Xiaonan Tan, Brian Pinette, Richard Weiss, and Edward M. Riseman. Image-based homing. IEEE Control Systems, 12(1):38–45, 1992.

    Article  Google Scholar 

  59. Berthold K.P. Horn and E.J. Weldon. Computational efficient methods for recovering translational motion. In International Conference on Computer Vision, pp. 2-11, 1987.

    Google Scholar 

  60. Berthold K.P. Horn and E.J. Weldon. Direct methods for recovering motion. International Journal of Computer Vision, 2:51–76, 1988.

    Article  Google Scholar 

  61. R. Jain. Direct computation of the focus of expansion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(1):58–64, January 1983.

    Article  Google Scholar 

  62. R. Jain, S.L. Bartlett, and Nancy O’Brien. Motion stereo using ego-motion complex logarithmic mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(3):356–369, May 1987.

    Article  Google Scholar 

  63. Michael R.M. Jenkins. The stereopsis of time-varying images. Technical report RBCV-TR-84-3, Department of Computer Science, University of Toronto, Toronto, Ont., Canada, September 1984.

    Google Scholar 

  64. H.A. Kautz and J.F. Allen. Generalized plan recognition. In Proceedings of the Fifth National Conference on Artificial Intelligence, pp. 32-37, Philadelphia, PA, August 1986.

    Google Scholar 

  65. David J. Kriegman and Thomas O. Binford. Generic models for robot navigation. In IEEE International Conference on Robotics and Automation, 1988.

    Google Scholar 

  66. Benjamin J. Kuipers and Yung-Tai Byun. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. Robotics and Autonomous Systems, 8, 1991.

    Google Scholar 

  67. David Kortenkamp, Marcus Huber, Charles Cohen, Ulrich Raschke, Clint Bidlack, Clare Bates Congdon, Frank Koss, and Terry Weymouth. Integrated mobile robot design: Winning the AAAI-92 robot competition. IEEE Expert, August 1993.

    Google Scholar 

  68. A. Kosaka and Avi C. Kak. Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties. Computer Vision, Graphics, and Image Processing, 56(2), 1992.

    Google Scholar 

  69. Benjamin J. Kuipers and Tod S. Levitt. Navigation and mapping in large-scale space. AI Magazine, 9(2), 1988.

    Google Scholar 

  70. David Kortenkamp. Cognitive maps for mobile robots: A representation for mapping and navigation. PhD thesis, The University of Michigan, 1993.

    Google Scholar 

  71. E. Krotkov. Mobile robot localization using a single image. In Proceedings IEEE Conference on Robotics and Automation, 1989.

    Google Scholar 

  72. David J. Kriegman, Ernst Triendl, and Thomas O. Binford. Stereo vision and navigation in buildings for mobile robots. IEEE Transactions on Robotics and Automation, 5(6), 1989.

    Google Scholar 

  73. J.J. Koenderink and A.J. van Doorn. Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer. Optica Acta, 22:773–791, 1975.

    Article  Google Scholar 

  74. J.J. Koenderink and A.J. van Doom. Local structure of movement parallax of the plane. J. Opt. Soc. Amer., 66:717–723, 1976.

    Article  MathSciNet  Google Scholar 

  75. Darwin T. Kuan, James C. Zamiska, and Rodney A. Brooks. Natural decomposition of free space for path planning. In Proceedings of the IEEE International Conference on Robotics and Automation, 1985.

    Google Scholar 

  76. D.T. Lawton. Constraint-based inference from image motion. In The First Anual National Conference on Artificial Intelligence, pp. 31, 34, 1980.

    Google Scholar 

  77. Daryl T. Lawton. Motion analysis via local translational processing. In Proc. Workshop on Computer Vision: Representation and Control, pp. 59-72, Rindge, NH, August 1982.

    Google Scholar 

  78. D.T. Lawton. Processing restricted sensor motion, in Image Understanding Workshop, pp. 266, 281, 1983.

    Google Scholar 

  79. Daryl T. Lawton. Processing dynamic image sequences from a moving sensor. Technical Report COINS Technical Report 84-05, Department of Computer and Information Sciences, University of Massachusetts, 1984.

    Google Scholar 

  80. Victor R. Lesser and Daniel D. Corkill. Functionally accurate, cooperative distributed systems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-11(1):81–96, January 1981.

    Article  Google Scholar 

  81. Lingxiao Li and James H. Duncan. Recovering 3-d translation motion and establishing stereo correspondence from binocular flows. In IEEE Workshop on Visual Motion, pp. 329-336, Irvine, CA, March 1989.

    Google Scholar 

  82. B.D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Seventh International Joint Conference on Artificial Intelligence, pp. 674, 679, 1981.

    Google Scholar 

  83. Tod S. Levitt and Daryl T. Lawton. Qualitative navigation for mobile robots. Artificial Intelligence, 44(3), 1990.

    Google Scholar 

  84. Tomas Lozano-Perez and Michael A. Wesley. An algorithm for planning collision-free paths among polyhedral obstacles. Communications of the ACM, 22(10), 1979.

    Google Scholar 

  85. Bruce D. Lucas. Generalized image matching by the method of differences. Technical Report CMU-CS-85-160, Department of Computer Science, Carnegie-Mellon University, 1984.

    Google Scholar 

  86. Peter K. Malkin and Sanjaya Addanki. LOGnets: A hybrid graph spatial representation for robot navigation. In Proceedings of the National Conference on Artificial Intelligence (AAAI), 1990.

    Google Scholar 

  87. Maja K. Mataric. Integration of representation into goal-driven behavior-based robots. IEEE Transactions on Robotics and Automation, 8(3), 1992.

    Google Scholar 

  88. Hans P. Moravec and Alberta Elfes. High resolution maps from wide angle sonar. In Proceedings IEEE Conference on Robotics and Automation, 1985.

    Google Scholar 

  89. Saied Moezzi. Dynamic Stereo Vision. PhD thesis, The University of Michigan, Ann Arbor, 1992.

    Google Scholar 

  90. Hans P. Moravec. Towards automatic visual obstacle avoidance. In 5th International Joint Conference on Artificial Intelligence, volume 2, pp 584, Cambridge, Massachusetts, August 1977.

    Google Scholar 

  91. Hans P. Moravec. Robot Rover Visual Navigation. UMI Research Press, Ann Arbor, MI, 1981.

    Google Scholar 

  92. H.P. Moravec. Robot Rover Visual Navigation. UMI Research Press, Ann Arbor, 1981.

    Google Scholar 

  93. Hans-Hellmut Nagel. Constraints for the estimation of displacement vector fields from image sequences. In International Joint Conference on Artificial Intelligence, 1983.

    Google Scholar 

  94. Hans-Hellmut Nagel. On the estimation of optical flow: Relations between different approaches and some new results. Artificial Intelligence, 33:299–324, 1987.

    Article  Google Scholar 

  95. Hans-Hellmut Nagel and Wilfried Enkelmann. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, (5):565–593, Sep 1986.

    Article  Google Scholar 

  96. Randal C. Nelson. Visual homing using an associative memory. In Proceedings of the Image Understanding Workshop, 1989.

    Google Scholar 

  97. Shahriar Negahdaripour and Berthold K.P. Horn. Direct passive navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(1):168–176, January 1987.

    Article  MATH  Google Scholar 

  98. S. Neghadharipour and B.K.P. Horn. Using depth-is-positive constraint to recover translational motion. Technical Report AI Memo No 939, The MIT AI Lab, Cambridge, MA, 1987.

    Google Scholar 

  99. Shahriar Negahdaripour and Berthold K.P. Horn. A direct method for locating the focus of expansion. Computer Vision, Graphics and Image Processing, 46(3):303–326, June 1989.

    Article  Google Scholar 

  100. Nils J. Nilsson. A mobile automation: An application of AI techniques. In Proceedings of the International Joint Conference on Artificial Intelligence, 1969.

    Google Scholar 

  101. S. Neghadaripour and S. Lee. Motion recovery from image sequences using first-order optical flow information. In Proceedings of the IEEE Workshop on Visual Motion, pp. 132-139, October 1991.

    Google Scholar 

  102. S. Premvuti and S. Yuta. Consideration on the Cooperation of multiple autonomous mobile robots. In Tsuchiura, editor, IEEE Int. Workshop on Intelligent Robots and Systems (IROS ′90), pp. 59-63, Japan, 1990.

    Google Scholar 

  103. Jeffrey S. Rosenschein and Michael R. Genesereth. Communication and cooperation. Technical Report HPP-84-5, Stanford Heuristic Programming Project, Stanford University, October 1984.

    Google Scholar 

  104. A.S. Rao and M.P. Georgeff. Modeling rational agents within a BDI-architecture. In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufman Publishers, San Mateo, CA, 1991.

    Google Scholar 

  105. Yuval Roth, Annie S. Wu, Remzi H. Arpaci, Terry Weymouth, and Ramesh Jain. Model-driven pose correction. In Proceedings IEEE International Conference on Robotics and Automation, 1992.

    Google Scholar 

  106. A. Singh and P. Allen. Image-flow computation: An estimation-theoretic framework, and a unified perspective. Computer Vision, Graphics and Image Processing: Image Understanding, 56(2):152–177, 1992.

    MATH  Google Scholar 

  107. Brian G. Schunck. The motion constraint equation for optical flow. In IEEE International Conference on Pattern Recognition, pp. 20-22, 1984.

    Google Scholar 

  108. Brian G. Schunck. Motion Segmentation and estimation by constraint line clus tering. In IEEE Workshop on Computer Vision, pp. 58-62, 1984.

    Google Scholar 

  109. Brian G. Schunck. Image flow: Fundamentals and future research. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1985.

    Google Scholar 

  110. Brian G. Schunck. The image flow constraint equation. Computer Vision, Graphics and Image Processing, Vol 35: 20–46, 1986.

    Article  Google Scholar 

  111. Brian G. Schunck. Image flow continuity equations for motion and density. Proceedings of the Workshop on Motion, 1986.

    Google Scholar 

  112. Brian G. Schunck. Image flow segmentation and estimation by constraint line clustering IEEE Trans. Pattern Analysis and Machine Intelligence, 11(10), October 1989.

    Google Scholar 

  113. A. Singh. Image-flow computation: An estimation-theoretic framework, unification and integration. Machine Vision and Applications, 4:55, 1991.

    Article  Google Scholar 

  114. Chiao-Fe Shu and Ramesh Jain. Vector field analysis of oriented patterns. Technical Report CSE-TR-120-92, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann, Arbor, 1992.

    Google Scholar 

  115. Reid G. Smith. The contract net protocol: High-level communication and control in a distributed problem solver. IEEE Transactions on Computers, C-29(12):1104–1113, December 1980.

    Article  Google Scholar 

  116. G. Sandini and V. Tagliasco. An anthropomorphic cretin-like structure for scene analysis. Computer Graphics and Image Processing, 14(4):365–372, December 1980.

    Article  Google Scholar 

  117. K. Sugihara. Some location problems for robot navigation using a single camera. Computer Vision, Graphics, and Image Processing, 42(3), 1988.

    Google Scholar 

  118. Charles Thorpe and Jay Gowdy. Annotated maps for autonomous land vehicles. In Proceedings Image Understanding Workshop, 1990.

    Google Scholar 

  119. Saburo Tsuji and Shigang Li. Memorizing and representing route scenes. In Jean-Arcady Meyer, Herbert L. Roitblat, and Stewart W. Wilson, editors, From Animals to Animais 2: Proceedings of the Second International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge, MA, 1993.

    Google Scholar 

  120. O. Tretiak and L. Pastor. Velocity estimation from image sequences with second order differential operators. In IEEE International Conference on Pattern Recognition, pp. 20-22, 1984.

    Google Scholar 

  121. Massimo Tistarelli and Giulio Sandini. Robot navigation using an anthromorphic visual sensor. In IEEE Transactions on Robotics and Automation, pp. 374-381, Cincinnati, Ohio, May 1990.

    Google Scholar 

  122. A. Verri, F. Girosi, and V. Torre. Mathematical properties of 2d motion field: From singular points to motion parameters. In Proceedings of the IEEE Workshop on Visual Motion, pp. 190-200, March 1989.

    Google Scholar 

  123. A. Verri, F. Girosi, and V. Torre. Mathematical properties of the two-dimensional motion field: From singular points to motion parameters. Journal of the Optical Society of America, 6(5), 1989.

    Google Scholar 

  124. A. Verri, F. Girosi, and V. Torre. Differential techniques for optical flow. Journal of the Optical Society of America, 7(5), 1990.

    Google Scholar 

  125. Alessandro Verri and Tomaso Poggio. Against quantitative optical flow. In International Conference on Computer Vision, pp. 171-180, 1987.

    Google Scholar 

  126. Alessandro Verri and Tomaso Poggio. Qualitative information in the optical flow. Proceedings of the DARPA Image Understanding Workshop, pp. 825-834, 1987.

    Google Scholar 

  127. Alessandro Verri and Tomaso Poggio. Motion field and optical flow: Qualitative properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 11(No 5):490–498, May 1989.

    Article  Google Scholar 

  128. R. Weiss. Researchers eye retinal remapping. Science News, 134(8):119, August 1988.

    Article  Google Scholar 

  129. Carl F.R. Weiman. Private correspondance, September 1989.

    Google Scholar 

  130. Allen M. Waxman, Jacqueline J. LaMoigne, Larry S. Davis, Babu Srinivasan, Todd R. Kushner, Eli Liang, and Tharakesh Siddalingaiah. A visual navigation system for autonomous land vehicles. IEEE Journal of Robotics and Automation, RA-3(2):124–141, April 1987.

    Article  Google Scholar 

  131. Allen M. Waxman, Jian Wu, and Fredrik Bergholm. Convected activation profiles and the measurement of visual motion. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1988.

    Google Scholar 

  132. Masahiko Yachida. Determining velocity maps by spatiotemporal neighborhoods from image sequences. Computer Vision, Graphics and Image Processing, 21:262–279, 1983.

    Article  Google Scholar 

  133. Jiang Yu Zheng and Saburo Tsuji. Panoramic representations of scenes for route understanding. In Proceedings of the Tenth International Conference on Pattern Recognition, 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartlett, S.L., Hampapur, A., Huber, M.J., Kortenkamp, D., Moezzi, S., Weymouth, T. (1996). Vision for Mobile Robots. In: Sanz, J.L.C. (eds) Image Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58288-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58288-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63528-1

  • Online ISBN: 978-3-642-58288-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics