Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Multiple sclerosis (MS) is the most common neurological disease among young adults in temperate climates, with the onset usually between the ages of 20 and 40 years, affecting twice as many women as men. MS is a chronic inflammatory disease of the central nervous system (CNS), pathologically characterized by infiltration of immune cells into the CNS, localized myelin destruction, most likely due to autoimmune reactions against myelin proteins, and loss of oligodendrocytes and axons (Bruck et al. 1997; Mc Donald et al. 1992). Neurologically, MS is characterized by progressive disability of neurological functions, for example coordination, sensibility, pyramidal or urological functions. In MS, several specific patterns of the clinical disease course can be distinguished (Lublin and Reingold 1996) (Fig. 16.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkhof F, Scheltens P, Frequin ST et al. (1992) Relapsingremitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. Am J Roentgenol 159:1041–1047

    Article  CAS  Google Scholar 

  • Barkhof F, Filippi M, Miller DH et al. (1997) Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain 120:2059–2069

    Article  PubMed  Google Scholar 

  • Barkhof F, McGowan JC, van Waesberghe JH et al. (1998) Hypointense multiple sclerosis lesions on T1-weighted spin echo magnetic resonance images: their contribution in understanding multiple sclerosis evolution. J Neurol Neurosurg Psych 64:S77–S79

    Google Scholar 

  • Baratti C., Barkhof F., Hoogenraad F. et al. (1995) Partially saturated fluid attenuated inversion recovery (FLAIR) sequences in multiple sclerosis: comparison with fully relaxed FLAIR and conventional spin-echo. Magn Reson Imaging 13:513–521

    Article  CAS  PubMed  Google Scholar 

  • Bastianello S, Pozzilli C, Bernardi S et al. (1990) Serial study of gadolinium-DTPA MRI enhancement in multiple sclerosis. Neurology 40:591–595

    Article  CAS  PubMed  Google Scholar 

  • Bastionello S, Bozzao A, Paolillo A et al. (1997) Fast spin-echo and fast fluid-attenuated inversion-recovery versus conventional spin-echo sequences for MR quantificaiton of multiple sclerosis lesions. Am J Neuroradiol 18:699–704

    Google Scholar 

  • Bruck W, Bitsch A, Kolenda H et al (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42:783–793

    Article  CAS  PubMed  Google Scholar 

  • Evans AC, Frank JA, Antel J et al. (1997) The role of MRI in clinical trials of multiple sclerosis: comparison of image processing techniques. Ann Neurol 41:125–132

    Article  CAS  PubMed  Google Scholar 

  • Fazekaz F, Offenbacher H, Fuchs S et al. (1988) Criteria for an increased specificity of MRI interpretaion in elderly subjects with suspected multiple sclerosis. Neurology 38:1822–1825

    Article  Google Scholar 

  • Filippi M, Barker GJ, Horsfield MA et al. (1994) Benign and secondary progressive multiple sclerosis: a preliminary quantitative MRI study. J Neurol 241:246–251

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Paty DW, Kappos L et al. (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology 45:255–260

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Campi A, Colombo B et al. (1996a) A spinal cord MRI study of benign and secondary progressive multiple sclerosis. J Neurol 243:502–505

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Campi A, Marinelli V et al. (1996b) Brain and spinal cord MR in benign multiple sclerosis: a follow-up study. J Neurol Science 143:143–149

    Article  CAS  Google Scholar 

  • Filippi M, Barkhof F, Bressi S et al. (1997) Inter-rater variability in reporting enhancing lesions present on standard and triple dose gadolinium scans of patients with multiple sclerosis. Multiple Sclerosis 3:226–230

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Horsfield MA, Ader HJ et al. (1998a) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 43:499–506

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Rocca MA, Martino G et al. (1998b) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814

    Article  CAS  PubMed  Google Scholar 

  • Finelli DA, Hurst GC, Karaman BA et al. (1994) Use of magnetization transfer for improved contrast on gradient-echo MR images of the cervical spine. Radiology 193:165–171

    CAS  PubMed  Google Scholar 

  • Fog T (1950) Topographic distribution of plaques in the spinal cord in multiple sclerosis. Arch Neurol Psychiatry 63:382–414

    Article  Google Scholar 

  • Gass A, Barker GJ, Kidd D et al. (1994) Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 36:62–67

    Article  CAS  PubMed  Google Scholar 

  • Gass A, Moseley IF, Barker GJ et al. (1996) Lesion discrimination in optic neuritis using high-resolution fat-suppressed fast spin-echo MRI. Neuroradiology 38:317–321

    Article  CAS  PubMed  Google Scholar 

  • Gasperini C, Horsfield MA, Thorpe JW et al. (1996) Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: relationship to clinical parameters. J Magn Reson Imaging 6:580–584

    Article  CAS  PubMed  Google Scholar 

  • Gawne-Cain ML, O’Riordan JI, Thompson AJ et al. (1997a) Multiple sclerosis lesion detection in the brain: a comparison of fast fluid-attenuated inversion recovery and conventional T2-weighted dual spin echo. Neurology 49:364–370

    Article  CAS  PubMed  Google Scholar 

  • Gawne-Cain ML, Silver NC, Moseley IF et al. (1997b) Fast FLAIR of the brain: the range of appearances in normal subjects and its application to quantification of whitematter disease. Neuroradiology 39:243–249

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Scarano F, Grossman RI, Galetta S et al. (1987) Multiple sclerosis disease activity correlates with gadolinium-enhanced magnetic resonance imaging. Ann Neurol 21:300–306

    Article  CAS  PubMed  Google Scholar 

  • Guttmann CR, Ahn SS, Hsu et al. (1995) The evolution of multiple sclerosis lesions on serial MR. AJNR 16:1481–1491

    CAS  PubMed  Google Scholar 

  • Hajnal JV, Bryant DJ, Kasuboski L et al (1992) Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 16:841–844

    Article  CAS  PubMed  Google Scholar 

  • Hashemi RH, Bradley WG, Chen DY et al. (1995) Suspected multiple sclerosis: MR imaging with a thin-section fast FLAIR pulse sequence. Radiology 196:505–510

    CAS  PubMed  Google Scholar 

  • Hiehle JF, Grossman RI, Ramer KN et al. (1995) Magnetization transfer effects in MR-detected multiple sclerosis lesions: comparison with gadolinium-enhanced spin-echo images and nonenhanced T1-weighted images. AJNR 16:69–77

    PubMed  Google Scholar 

  • Hittmair K, Mallek R, Prayer D et al. (1996) Spinal cord lesions in patients with multiple sclerosis: comparison of MR pulse sequences. AJNR 17:1555–1565

    CAS  PubMed  Google Scholar 

  • Kappos L, Moeri D, Radue EW et al. (1999) Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet 353:964–969

    Article  CAS  PubMed  Google Scholar 

  • Katz D, Taubenberger JK, Cannella B et al. (1993) Correlation between magnetic resonance imaging findings and lesion development in chronic, active multiple sclerosis. Ann Neurol 34:661–669

    Article  CAS  PubMed  Google Scholar 

  • Kidd D, Thorpe JW, Thompson AJ et al. (1993) Spinal cord MRI using multi-array coils and fast spin echo. II. Findings in multiple sclerosis. Neurology 43:2632–2637

    Article  CAS  PubMed  Google Scholar 

  • Kidd D, Thorpe JW, Kendall BE et al. (1996) MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 60:15–19

    Article  CAS  PubMed  Google Scholar 

  • Kidd D., Barkhof F., McConnell R. et al. (1999) Cortical lesions in multiple sclerosis. Brain 122:17–26

    Article  PubMed  Google Scholar 

  • Larsson EM, Holtas S, Nilsson O (1989) Gd-DTPA-enhanced MR of suspected spinal multiple sclerosis. AJNR 10:1071–1076

    CAS  PubMed  Google Scholar 

  • LeBihan D, Turner R, Patronas N (1995) Diffusion MR imaging in normal brain and in brain tumors. In: LeBihan D (nted) Diffusion and perfusion magnetic resonance imaging. Applications to functional MRI. Raven Press, New York, pp 134–140

    Google Scholar 

  • Losseff NA, Kingsley DP, McDonald WI et al. (1996a) Clinical and magnetic resonance imaging predictors of disability in primary and secondary progressive multiple sclerosis. Multiple Sclerosis 1:218–222

    CAS  PubMed  Google Scholar 

  • Losseff NA, Wang L, Lai HM et al. (1996b) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119:2009–2019

    Article  PubMed  Google Scholar 

  • Losseff NA, Webb SL, O’Riordan JI et al. (1996c) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119:701–708

    Article  PubMed  Google Scholar 

  • Losseff NA, Miller DH (1998) Measures of brain and spinal cord atrophy in multiple sclerosis. J Neurol Neurosurg Psychiatry 64:S102–105

    PubMed  Google Scholar 

  • Lublin FD, Reingold SC (1996) Defining the clinical course of multiple sclerosis: results of an international survey. Neurology 46:907–911

    Article  CAS  PubMed  Google Scholar 

  • Lycklama a Nijeholt GJ, Barkhof F, Castelijns JA et al. (1996) Comparison of two MR sequences for the detection of multiple sclerosis lesions in the spinal cord. AJNR 17:1533–1538

    PubMed  Google Scholar 

  • Lycklama a Nijeholt GJ, Barkhof F, Scheltens P et al. (l997) MR of the spinal cord in multiple sclerosis: relation to clinical subtype and disability. AJNR 18:1041–1048

    Google Scholar 

  • Lycklama a Nijeholt GJ, van Walderveen MA, Castelijns JA et al. (l998) Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 121:687–697

    Article  Google Scholar 

  • Mascalchi M, Dal Pozzo G, Bartolozzi C (1993) Effectiveness of the short TI inversion recovery (STIR) sequence in MR imaging of intramedullary spinal lesions. Magn Reson Imaging 11:17–25

    Article  CAS  PubMed  Google Scholar 

  • McDonald WI, Miller DH, Barnes D (1992) The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 18:319–334

    Article  CAS  PubMed  Google Scholar 

  • Miller DH, Barkhof F, Nauta JJ (1993a) Gadolinium enhancement increases the sensitivity of MRI in detecting disease activity in multiple sclerosis. Brain 116:1077–1094

    Article  PubMed  Google Scholar 

  • Miller DH, McManus DG, Bartlett PA et al. (1993b) Detection of optic nerve lesions in optic neuritis using frequencyselective fat-saturation sequences. Neuroradiology 35:156–158

    Article  CAS  PubMed  Google Scholar 

  • Miller DH, Rudge P, Johnson G et al. (1998) Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain 111:927–939

    Article  Google Scholar 

  • Morrissey SP, Miller DH, Kendall BE et al. (l993) The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain 116:135–146

    Article  Google Scholar 

  • Oppenheimer DR (l978) The cervical cord in multiple sclerosis. Neuropathol Appl Neurobiol 4:151–162

    Article  Google Scholar 

  • Paty DW, Oger JJF, Kastrukoff LF (1988) MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligo clonal banding and CT. Neurology 38:180–185

    Article  CAS  PubMed  Google Scholar 

  • Paty DW, Li DK (l996) Importance of magnetic resonance imaging and gadolinium enhancement. Ann Neurol 40:951–953

    Article  Google Scholar 

  • Poser CM, Paty DW, Scheinberg L et al. (1983) New diagnostic criteria for multiple sclerosis: guidlines for research protocols. Ann Neurol 13:227–231

    Article  CAS  PubMed  Google Scholar 

  • Riahi F, Zijdenbos A, Narayanan S et al. (1998) Improved correlation between scores on the expanded disability status scale and cerebral lesion load in relapsing-remitting multiple sclerosis. Results of the application of new imaging methods. Brain 121:1305–1312

    Article  PubMed  Google Scholar 

  • Rovaris M, Mastronardo G, Gasperini C et al. (l998) MRI evolution of new MS lesions enhancing after different doses of gadolinium. Act Neurol Scand 98:90–93

    Article  Google Scholar 

  • Rydberg RN, Hammond CA, Grimm RC et al (1994) Initial experience in MR imaging of the brain with fast fluidattenuated inversion-recovery pulse sequence. Radiology 193:173–180

    CAS  PubMed  Google Scholar 

  • Silver NC, Barker GJ, McManus DG et al. (1997) Magnetisation transfer ratio of normal brain white matter: a normative database spanning four decades of life. J Neurol Neurosurg Psychiatry 62:223–228

    Article  CAS  PubMed  Google Scholar 

  • Stevenson VL, Gawne-Cain ML, Barker GJ et al. (1997) Imaging of the spinal cord and brain in multiple sclerosis: a comparative study between fast FLAIR and fast spin echo. J Neurol 244:119–124

    Article  CAS  PubMed  Google Scholar 

  • Stevenson VL, Leary SM, Losseff NA et al. (1998) Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 51:234–238

    Article  CAS  PubMed  Google Scholar 

  • Stevenson VL, Miller DH, Rovaris M et al. (1999) Primary and transitional progressive MS. A clinical and MRI cross-sectional study. Neurology 52:839–845

    Article  CAS  PubMed  Google Scholar 

  • Tartaglino LM, Croul SE, Flanders AE et al. (1995) Multiple sclerosis in the spinal cord: MR appearance and correlation with clinical parameters. Radiology 195:725–732

    CAS  PubMed  Google Scholar 

  • Thielen KR, Miller GM (1996) Multiple sclerosis of the spinal cord: magnetic resonance appearance. J Comput Assist Tomogr 20:434–438

    Article  CAS  PubMed  Google Scholar 

  • Thomas DJ, Pennock JM, Hajnal JV et al. (1993) Magnetic resonance imaging of spinal cord in multiple sclerosis by’ fluid-attenuated inversion recovery. Lancet 341:593–594

    Article  CAS  PubMed  Google Scholar 

  • Thorpe JW, Kidd D, Kendall BE et al. (1993) Spinal cord MRI using multi-array coils and fast spin echo. I. Technical aspects and findings in healthy adults. Neurology 43:2625–2631

    Article  CAS  PubMed  Google Scholar 

  • Thorpe JW, Halpin SF, McManus DG et al. (1994a) A comparison between fast and conventional spin-echo in the detection of multiple sclerosis lesions. Neuroradiology 36:388–392

    Article  CAS  PubMed  Google Scholar 

  • Thorpe JW, McManus DG, Kendall BE et al. (1994b) Short tau inversion recovery fast spin-echo (fast STIR) imaging of the spinal cord in multiple sclerosis. Magn Reson Imaging 12:983–989

    Article  CAS  PubMed  Google Scholar 

  • Thorpe JW, Kidd D, Moseley IF et al. (1996a) Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain 119:709–714

    Article  PubMed  Google Scholar 

  • Thorpe JW, Kidd D, Moseley IF et al. (1996b) Serial gadolinium-enhanced MRI of the brain and spinal cord in early relapsing-remitting multiple sclerosis. Neurology 46:373–378

    Article  CAS  PubMed  Google Scholar 

  • Tien RD, Hesselink JR, Szumowski J (1991) MR fat suppression combined with Gd-DTPA enhancement in optic neuritis and perineuritis. J Comput Assist Tomogr 15:223–227

    Article  CAS  PubMed  Google Scholar 

  • Truyen L, van Waesberghe JH, van Walderveen MA et al. (1996) Accumulation of hypointense lesions (“black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 47:1469–1476

    Article  CAS  PubMed  Google Scholar 

  • Tubridy N, Coles AJ, Molyneux P et al. (1998) Secondary progressive multiple sclerosis: the relationship between short-term MRI activity and clinical features. Brain 121:225–231

    Article  PubMed  Google Scholar 

  • Van Waesberghe JH, Castelijns J, Barkhof F (1996a) Magnetization transfer imaging in multiple sclerosis. Int MS J 3:47–57

    Google Scholar 

  • Van Waesberghe JH, Castelijns JA, Weerts JG et al. (1996b) Disappearance of multiple sclerosis lesions with severely prolonged Tl on images obtained by a FLAIR pulse sequence. Magn Reson Imaging 14:209–213

    Article  PubMed  Google Scholar 

  • Van Waesberghe JH, Castelijns JA, Lazeron RH et al. (1998a) Magnetization transfer contrast (MTC) and long repetition time spin-echo MR imaging in multiple sclerosis. Magn Reson Imaging 16:351–358

    Article  PubMed  Google Scholar 

  • Van Waesberghe JHTM, Van Buchem MA, Filippi M et al. (1998b) MR outcome parameters in multiple sclerosis: comparison of surface-based thresholding segmentation and magnetization transfer ratio histographic analysis in relation to disability. AJNR 19:1857–1862

    PubMed  Google Scholar 

  • Van Waesberghe JHTM, Kamphorst W, de Groot CJA et al. (1999) Axonal loss in MS lesions: MRI insights into substrated of disability. Ann Neurol (in press)

    Google Scholar 

  • Van Walderveen MA, Barkhof F, Hommes OR et al. (1995) Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology 45:1684–1690

    Article  PubMed  Google Scholar 

  • Van Walderveen MA, Barkhof F, Tas MW et al. (1998a) Patterns of brain magnetic resonance abnormalities on T2-weighted spin echo images in clinical subgroups of multiple sclerosis: a large cross-sectional study. Eur Neurol 40:91–98

    Article  PubMed  Google Scholar 

  • Van Walderveen MA, Kamphorst W, Scheltens P et al. (1998b) Histopathologic correlate of hypo intense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288

    Article  PubMed  Google Scholar 

  • White SJ, Hajnal JV, Young IR et al (1992) Use of fluid-attenuated inversion recovery pulse sequences for imaging the spinal cord. Magn Reson Medicine 28:153–162

    Article  CAS  Google Scholar 

  • Wolansky LJ, Bardini JA, Cook SD et al. (1994) Triple-dose versus single-dose gadoteridol in multiple sclerosis patients. J Neuroimaging 4:141–145

    CAS  PubMed  Google Scholar 

  • Yousry TA, Gunter F, Walther E et al. (1998) Triple dose of gadolinium-DTPA increases the sensitivity of spinal cord MRI in detecting enhancing lesions in multiple sclerosis. J Neurol Sciences 158:221–225

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bergers, E., Barkhof, F. (2001). Multiple Sclerosis. In: Demaerel, P. (eds) Recent Advances in Diagnostic Neuroradiology. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56662-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56662-2_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63003-3

  • Online ISBN: 978-3-642-56662-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics