Fast generation of 3D bone models for craniofacial surgical planning: an interactive approach

  • L. Ritter
  • M. Liévin
  • R. Sader
  • H-F. Zeilhofer
  • E. Keeve
Conference paper

Abstract

A comprehensive image processing pipeline for efficient and accurate construction of 3D surface skull models for computer-aided craniofacial surgical planning is presented. In a pre-processing step, algorithms for noise and artefact reduction enhance initial CT data sets. Next, segmentation is real-time visualized in volume and provides the user with an instant overview of the ongoing segmentation. Finally, a dedicated implementation of the Marching Cube algorithm for bone surface extraction is employed. The pipeline was tested by generation of surface models from ten CT scans acquired for craniofacial surgical planning.

Keywords

Interactive bone segmentation craniofacial surgery volume visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Everett et al., “A 3D System for Planning and Simulating Minimally-Invasive Distraction Osteogenesis of the Facial Skeleton,” Proceedings of Third International Conference On Medical Robotics, Imaging and Computer Assisted Surgery, pp. 1029–1039, 2000.Google Scholar
  2. 2.
    Keeve E., Girod S., Kikinis R., Girod B., “Deformable Modeling of Facial Tissue for Craniofacial Surgery Simulation,” Computer Aided Surgery, John Wiley & Sons Inc., New York, Vol. 3, No. 5, pp. 228–238, 1999.Google Scholar
  3. 3.
    Petzold R., Zeilhofer H.-F., Kalender W.A., “Rapid prototyping technology in medicine -basics and applications” Comput Med Imaging Graph., Vol. 23 No. 5, pp. 277–84. 1999Google Scholar
  4. 4.
    Keeve, E., Jansen T., Krol Z., Ritter L., von Rymon-Lipinski B., Sader R., Zeilhofer H.-F., Zerfass P., “JULIUS - An Extendable Software Framework for Surgical Planning and Image-Guided Navigation” Medical Image Computing and Computer-Assisted Intervention -MICCAI’O1, W.J. Niessen, M. A. Viergever, pp. 1336–37, Springer, Utrecht, 2001.Google Scholar
  5. 5.
    Geman, S. Geman, D. “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, pp. 721–742, 1984.Google Scholar
  6. 6.
    Held K., Rota Kopps E., Krause B., Wells W., Kikinis R., Muller-Gartner H., “Markov Random Field Segmentation of Brain MR Images,” IEEE Transactions on Medical Imaging, Vol.16, pp. 878–887,1998.Google Scholar
  7. 7.
    http://www.opengl.orgGoogle Scholar
  8. 8.
    Lorensen W. E., Cline H. E., “Marching Cube: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics, Vol. 21, No. 4, pp. 163–169, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • L. Ritter
    • 1
  • M. Liévin
    • 1
  • R. Sader
    • 2
  • H-F. Zeilhofer
    • 2
  • E. Keeve
    • 1
  1. 1.Surgical Systems LaboratoryResearch Center caesarBonnGermany
  2. 2.Dept. of Cranio- and Maxillofacial SurgeryTechnical University of MunichMunichGermany

Personalised recommendations