Methods and Approaches for RF Circuit Simulation and Electromagnetic Modelling

  • T. A. M. Kevenaar
  • E. J. W. ter Maten
  • H. H. J. M. Janssen
  • S. P. Onneweer
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 4)

Abstract

RF circuits and systems are gaining importance because we are moving further into a society where information is very important and should be available any time and anywhere. In this paper we give an overview of RF circuit simulation with an emphasis on noise simulation which is important functionality for RF designers. Due to the high frequency signals, the standard circuit formulation using Kirchhoff and lumped elements is not sufficient anymore to accurately predict the behaviour of a design and Maxwell’s equations should be used. We give several approximations of Maxwell’s equations and scenarios how the results can be incorporated in RF circuit simulation.

Keywords

Permeability Microwave Attenuation Propa GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Anzill, F.X. Kärtner, P. Russer: Simulation of the phase noise of oscillators in the frequency domain, AEÜ, Archive für Elektr. und Übertragungstechnik, Vol. 48-1, pp. 45–50, 994.Google Scholar
  2. 2.
    H.G. Brachtendorf, G. Welsch, R. Laur, A. Bunse-Gerstner: Numerical steady state analysis of electronic circuits driven by multi-tone signals, Electrical Engineering 79, pp. 103–112, 1996.CrossRefGoogle Scholar
  3. 3.
    H.G. Brachtendorf, R. Laur: Analyse des transienten Verhaltens von Oszillatoren durch eine inverse Charakteristikenmethode, ITG Workshop Mikroelektronik für die Informationstechnik, Darmstadt, Germany, 2000.Google Scholar
  4. 4.
    A. Demir, A. Sangiovanni-Vincentelli: Analysis and Simulation of noise in nonlinear electronic circuits and systems, Kluwer Academic Publ., Boston, USA, 1998.CrossRefGoogle Scholar
  5. 5.
    A. Demir, A. Mehrotra, J. Roychowdhury: Phase noise in oscillators: a unifying theory and numerical methods for characterisation, DAC98, San Francisco, June 1998. Extended version IEEE Trans. on Circuits and Systems-I: Fund. Theory and Applics., Vol. 47-5, pp. 655–674, 2000.Google Scholar
  6. 6.
    A. Demir: Phase noise in oscillators: DAEs and coloured noise sources, Proc. ICCAD’98, Int. Conf. on Computer Aided Design, Nov. 8-12, 1998, San Jose, CA, USA, pp. 170–177, 1998.Google Scholar
  7. 7.
    S.H.M.J. Houben, E.J.W. ter Maten, J.M. Maubach, J.M.F. Peters: Novel time-domain methods for free-running oscillators, In: V. Porra, M. Valtonen, I. Hartimo, M. Unionen, O. Simula, T. Veijola: ECCTD’01 — Proceedings of the 15TH European Conference on Circuit Theory and Design, Helsinki University of Technology (ISBN 951-22-5571-5), Finland, pp III–393–III–396, 2001.Google Scholar
  8. 8.
    T.A.M. Kevenaar: Periodic Steady State Analysis using Shooting and Waveform-Newton, Int. J. Circuit Theory and Applics., Vol 22, pp. 51–60, 1994.au]CrossRefMATHGoogle Scholar
  9. 9.
    T.A.M. Kevenaar, E.J.W. ter Maten: RF IC Simulation: state-of-the-art and future trends, Proc. SISPAD’99 (ISBN 4-930813-98-0), Kyoto, Japan, pp. 7–11, 1999.Google Scholar
  10. 10.
    K. Kundert: Simulation methods for RF integrated circuits, Proc. ICCAD’97, San Jose, CA, USA, 1997.Google Scholar
  11. 11.
    R. Lamour: Floquet-Theory for differential-algebraic equations (DAE), ZAMM, Vol. 78-3, pp. S989–S990, 1998.CrossRefGoogle Scholar
  12. 12.
    S. Lampe, H.G. Brachtendorf, E.J.W. ter Maten, S.P. Onneweer, R. Laur: Robust limit cycle calculations of oscillators, In: U. van Rienen, M. Günther, D. Hecht (Eds): Scientific computing in electrical engineering, Proc. SCEE-2000, Warnemiinde, Germany, Lecture Notes in Computational Science and Engineering 18, Springer Verlag, Berlin, Germany, pp. 233–240, 2001.CrossRefGoogle Scholar
  13. 13.
    E.J.W. ter Maten: Numerical methods for frequency domain analysis of electronic circuits, Survey on Mathematics for Industry, Vol. 8, pp. 171–185, 1999.MATHGoogle Scholar
  14. 14.
    K. Mayaram, D.C. Lee, S. Moinian, D. Rich, J. Roychowdhury: Overview of computer-aided analysis tools for RFIC: algorithms, features, and limitations, IEEE 1997 Custom Integrated Circuit Conference, Santa Clara, pp. 505–512, 1997.Google Scholar
  15. 15.
    R. Neubert, A. Schwarz: Efficient analysis of oscillatory circuits, In: U. van Rienen, M. Günther, D. Hecht (Eds): Scientific computing in electrical engineering, Proc. SCEE-2000, Warnemünde, Germany, Lecture Notes in Computational Science and Engineering 18, Springer Verlag, Berlin, Germany, pp. 225–232, 2001.Google Scholar
  16. 16.
    M. Okumura, H. Tanimoto, T. Itakura, T. Sugawara: Numerical noise analysis for nonlinear circuits with a periodic large signal excitation including cyclostationary noise sources, IEEE Trans. on Circuits and Systems — I: Fund. Theory and Applics., Vol.40–9, pp. 581–590, 1993.Google Scholar
  17. 17.
    R. Pulch, M. Günther: A method of characteristics for solving multirate partial differential equations in radio frequency application, Preprint Nr. 00/07, IWRMM, Univ. Karlsruhe, subm. for publication, 2000.Google Scholar
  18. 18.
    M. Rösch, K. Antreich: Schnelle stationäre Simulation nichtlinearer Schaltungen im Frequenzbereich, AEÜ — Archive für Elektronik und Übertragungstechnik, 46, pp. 1–101992).Google Scholar
  19. 19.
    J. Roychowdhury: Multi-time PDEs for dynamical system analysis, In: U. van Rienen, M. Günther, D. Hecht (Eds): Scientific computing in electrical engineering, Proc. SCEE-2000, Warnemünde, Germany, Lecture Notes in Computational Science and Engineering 18, Springer Verlag, Berlin, Germany, pp. 3–14, 2001.CrossRefGoogle Scholar
  20. 20.
    D.A. Smith, W.F. Ford, and A. Sidi: Extrapolation methods for vector sequences, SIAM Review, 29(2), pp. 199–233, 1987.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    R. Telichevesky, K. Kundert: Efficient AC and noise analysis of two-tone RF circuits, Proc. DAC’96, Las Vegas, 1996.Google Scholar
  22. 22.
    S. Ramo, J.R. Whinnery and T. Van Duzer, ”Fields and Waves in Communication Electronics”, Wiley, New York, 1996.Google Scholar
  23. 23.
    A. Odabasioglu and M. Celik, ”PRIMA: Passive Reduced-Order Interconnect Macromodeling Algorithm”, IEEE. Trans. Computer-Aided Design, Vol. 17, pp. 645–654, 1999.CrossRefGoogle Scholar
  24. 24.
    L. Knockaert and D. De Zutter, ”Passive Reduced Order Multi-port Modeling: The Pade-Arnoldi-SVD Connection”, Int. J. Electronics and Communications, no. 53, pp. 254–260, 1999.Google Scholar
  25. 25.
    P. Feldman and R.W. Freund, ”Efficient Linear Circuit Analysis by Padé Approximation via the Lanczos Process”, IEEE Trans. Computer-Aided Design, Vol. 14, pp. 639–649, May 1995.CrossRefGoogle Scholar
  26. 26.
    G. Wang, ”A Survey on Simulations of Metal-Insulator-Semiconductor Interconnects”, Stanford internal report, Nov. 1998, http://www-tcad.stanford.edu/~gaofeng/research/mis_eview.htm/~gaofeng/research/mis_eview.htm
  27. 27.
    T.H. Hubing, ”Survey of Numerical Electromagnetic Modeling Techniques”, Univ. of Missouri-Rolla internal report, Sep. 1991, http://www.emclab.umr.edu/pdf/TR91-l-001.pdf/pdf/TR91-l-001.pdf
  28. 28.
    P.P. Silvester and R.L. Ferrari, ”Finite Elements for Electrical Engineers”, Cambridge Univ. Press, 1996.Google Scholar
  29. 29.
    C.A. Brebbia, J.C. Telles and L.C Wrobel, ”Boundary Element Techniques”, Berlin: Springer-Verlag, 1984.Google Scholar
  30. 30.
    R.F. Harrington, ”Field Computation by Moment Methods”, IEEE Press Series on EM Waves, 1993.Google Scholar
  31. 31.
    T.G. Livernois and P.B. Katehi, A Generalized Method for Deriving the Spacedomain Green’s Function in a Shielded, Multi-layer Substrate Structure with Applications to MIS Transmission Lines”, IEEE Trans. Microwave Theory Tech., Vol. MTT-37, pp. 1761–67, 1989.CrossRefGoogle Scholar
  32. 32.
    W.C. Chew, J.M. Jin, E. Michielssen and J.M. Song (Editors), ”Fast and Efficient Algorithms in Computational Electromagnetics”, Artech House, Boston, MA, 2001.Google Scholar
  33. 33.
    K.S. Yee, ”Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”, IEEE Trans. Antennas and Propagation, Vol. 14, pp. 302–307, 1966.MATHGoogle Scholar
  34. 34.
    A. Taflove (Editor), ”Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method”, Artech House, Boston, MA, 1998.Google Scholar
  35. 35.
    P.B. Johns, ”A Symmetrical Condensed Node for the TLM Method”, IEEE Trans. Microwave Theory Tech., Vol. MTT-35, pp. 370–377, 1987.CrossRefGoogle Scholar
  36. 36.
    D. Leenaerts, G. Gielen and R.A. Rutenbar, ”CAD Solutions and Outstanding Challenges for Mixed-Signal and RF IC-Design”, Proc. ICCAD 2001.Google Scholar
  37. 37.
    R. du Cloux, G.P.J.F.M. Maas, A.J.H. Wachters, R.F. Milsom and K.J. Scott, ”Fasterix, an environment for PCB simulation”, Proc. 11th Int. Conf. On EMC, Zürich, Switzerland, 1993.Google Scholar
  38. 38.
    P.B.L. Meijer, ”Generalized Neural Networks for Modeling Non-linear Dynamic Multi-demensional Systems in Time and Frequency Domain”, Philips Research Internal Report 6726, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • T. A. M. Kevenaar
    • 1
  • E. J. W. ter Maten
    • 2
  • H. H. J. M. Janssen
    • 1
  • S. P. Onneweer
    • 3
  1. 1.Philips Research Laboratories EindhovenSunnyvaleUSA
  2. 2.Philips Research Laboratories EindhovenEindhoven University of TechnologySunnyvaleUSA
  3. 3.Philips SemiconductorsSunnyvaleUSA

Personalised recommendations