Skip to main content

Anti-VEGF Strategies in Combination with Radiotherapy

  • Chapter
Modification of Radiation Response

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Formation of new blood vessels, i.e. angiogenesis, is essential for the development and growth of solid tumors (Folkman 1971, 1986, 1995). Tumor angiogenesis results from an imbalance between pro-angiogenic factors, e.g. vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF), and endogenous anti-angiogenic factors such as angiostatin and endostatin (Folkman 1995; O’reilly et al. 1996, 1997; Endrich and Vaupel 1998; Ferrara and Alitalo 1999; Carmeliet and Jain 2000; Kerbel 2000; Yancopoulos et al. 2000). Extensive experimental data indicate that application of either inhibitors of proangiogenic factors or administration of endogenous anti-angiogenic factors reduce the formation of new blood vessels. As a result, tumors grow at a slower rate or even shrink. However, in most cases no permanent tumor control can be achieved. In theory, the combination of anti-angiogenic strategies with cytotoxic agents such as chemotherapy or irradiation represents a promising approach to increasing treatment efficacy in solid tumors (Folkman 1971; Teicher et al. 1992; Denekamp 1993; Folkman 1995; Siemann et al. 2000; Koukourakis 2001; Rosen 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272:15442–15451

    Article  PubMed  CAS  Google Scholar 

  • Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, Ferrara N, King GL, Smith LE (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92: 10457–10461

    Article  PubMed  CAS  Google Scholar 

  • Asano M, Yukita A, Matsumoto T, Kondo S, Suzuki H (1995) Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor 121. Cancer Res 55:5296–5301

    PubMed  CAS  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14:53–65

    Article  PubMed  CAS  Google Scholar 

  • Bell C, Lynam E, Landfair DJ, Janjic N, Wiles ME (1999) Oligonucleotide NX1838 inhibits VEGF 165-mediated cellular responses in vitro. In Vitro Cell Dev Biol Anim 35: 533–542

    Article  PubMed  CAS  Google Scholar 

  • Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Invest 103:159–165

    Article  PubMed  CAS  Google Scholar 

  • Borgström P, Hillan KJ, Sriramarao P, Ferrara N (1996) Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res 56:4032–4039

    PubMed  Google Scholar 

  • Bruns CJ, Liu W, Davis DW, Shaheen RM, McConkey DJ, Wilson MR, Bucana CD, Hicklin DJ, Ellis LM (2000) Vascular endothelial growth factor is an in vivo survival factor for tumor endothelium in a murine model of colorectal carcinoma liver metastases. Cancer 89:488–499

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Collen D (2000) Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann NY Acad Sci 902: 249–262

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  • Cropp G, Rosen L, Mulay M et al (1999) Pharmacokinetics and pharmacodynamics of SU5416 in a phase I, dose-escalating trial in patients with advanced malignancies (abstract 619). Proc Am Soc Clin Oncol 18:161a

    Google Scholar 

  • Davidoff AM, Leary MA, Ng CY, Vanin EF (2001) Gene therapymediated expression by tumor cells of the angiogenesis inhibitor flk-1 results in inhibition of neuroblastoma growth in vivo. J Pediatr Surg 36:30–36

    Article  PubMed  CAS  Google Scholar 

  • De Gowin RL, Lewis LJ, Hoak JC, Mueller AL, Gibson DP (1974) Radiosensitivity of human endothelial cells in culture. J Lab Clin Med 84:42–48

    PubMed  Google Scholar 

  • Denekamp J (1993) Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br J Radiol 66:181–196

    Article  PubMed  CAS  Google Scholar 

  • DeVore RF, Fehrenbacher L, Herbst RS et al. (2000) A randomized phase II trial comparing Rhumab VEGF (recombinant humanized monoclonal antibody to vascular endothelial growth factor) plus carboplatin/paclitaxel (CP) to CP alone in patients with stage IIIB/IV NSCLC (abstract 1896). Proc Am Soc Clin Oncol 19:454a

    Google Scholar 

  • Drevs J, Hofmann I, Hugenschmidt H, Wittig C, Madjar H, Muller M, Wood J, Martiny-Baron G, Unger C, Marme D (2000) Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res 60:4819–4824

    PubMed  CAS  Google Scholar 

  • Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  CAS  Google Scholar 

  • Endrich B, Vaupel P (1998) The role of the microcirculation in the treatment of malignant tumors: facts and fiction. In: Molls M, Vaupel P (eds) Blood perfusion and microenvironment of human tumors. Springer, Berlin Heidelberg, pp 19–39

    Chapter  Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Alitalo K (1999) Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5:1359–1364

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1986) How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes Memorial Award lecture. Cancer Res 46:467–473

    PubMed  CAS  Google Scholar 

  • Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  PubMed  CAS  Google Scholar 

  • Fong TA, Shawver LK, Sun L, Tang C, App H, Powell TJ, Kim YH, Schreck R, Wang X, Risau W, Ullrich A, Hirth KP, McMahon G (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res 59: 99–106

    PubMed  CAS  Google Scholar 

  • Fuks Z, Persaud RS, Alfieri A, McLoughlin M, Ehleiter D, Schwartz JL, Seddon AP, Cordon-Cardo C, Haimovitz-Friedman A (1994) Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 54:2582–2590

    PubMed  CAS  Google Scholar 

  • Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H, Hallahan DE (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61:2413–2419

    PubMed  CAS  Google Scholar 

  • Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT (1998) Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci U S A 95:8795–8800

    Article  PubMed  CAS  Google Scholar 

  • Gordon MS, Margolin K, Talpaz M, Sledge GW Jr, Holmgren E, Benjamin R, Stalter S, Shak S, Adelman D (2001) Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 19:843–850

    PubMed  CAS  Google Scholar 

  • Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM, Seetharam S, Koons A, Hari DM, Kufe DW, Weichselbaum RR (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59: 3374–3378

    PubMed  CAS  Google Scholar 

  • Gray LH, Conger AD, Ebert M et al (1953) The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br J Radiol 26: 638–648

    Article  PubMed  CAS  Google Scholar 

  • Griffin RJ, Williams BW, Wild R, Cherrington JM, Park H, Song CW (2002) Simultaneous inhibition of the receptor kinase activity of vascular endothelial, fibroblast, and platelet-derived growth factors suppresses tumor growth and enhances tumor radiation response. Cancer Res 62: 1702–1706

    PubMed  CAS  Google Scholar 

  • Guo D, Jia Q, Song HY, Warren RS, Donner DB (1995) Vascular endothelial cell growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains. Association with endothelial cell proliferation. J Biol Chem 270:6729–6733

    Article  PubMed  CAS  Google Scholar 

  • Gupta VK, Jaskowiak NT, Beckett MA, Mauceri HJ, Grunstein J, Johnson RS, Calvin DA, Nodzenski E, Pejovic M, Kufe DW, Posner MC, Weichselbaum RR (2002) Vascular endothelial growth factor enhances endothelial cell survival and tumor radioresistance. Cancer J 8:47–54

    Article  PubMed  Google Scholar 

  • Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A, Witte L, Fuks Z (1991) Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells. Cancer Res 51:2552–2558

    PubMed  CAS  Google Scholar 

  • Hei TK, Marchese MJ, Hall EJ (1987) Radiosensitivity and sublethal damage repair in human umbilical cord vein endothelial cells. Int J Radiat Oncol Biol Phys 13:879–884

    Article  PubMed  CAS  Google Scholar 

  • Hess C, Vuong V, Hegyi I, Riesterer O, Wood J, Fabbro D, Glanzmann C, Bodis S, Pruschy M (2001) Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548] combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer 85:2010–2016

    Article  PubMed  CAS  Google Scholar 

  • Im SA, Gomez-Manzano C, Fueyo J, Liu TJ, Ke LD, Kim JS, Lee HY, Steck PA, Kyritsis AP, Yung WK (1999) Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res 59:895–900

    PubMed  CAS  Google Scholar 

  • Jakeman LB, Winer J, Bennett GL, Altar CA, Ferrara N (1992) Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. J Clin Invest 89:244–253

    Article  PubMed  CAS  Google Scholar 

  • Karkkainen MJ, Petrova TV (2000) Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19:5598–5605

    Article  PubMed  CAS  Google Scholar 

  • Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106:1311–1319

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  Google Scholar 

  • Kerbel RS, Viloria-Petit A, Okada F, Rak J (1998) Establishing a link between oncogenes and tumor angiogenesis. J Mol Med 4:286–295

    CAS  Google Scholar 

  • Kermani P, Leclerc G, Martel R, Fareh J (2001) Effect of ionizing radiation on thymidine uptake, differentiation, and VEGFR2 receptor expression in endothelial cells: the role of VEGF(165). Int J Radiat Oncol Biol Phys 50:213–220

    Article  PubMed  CAS  Google Scholar 

  • Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  PubMed  CAS  Google Scholar 

  • Koukourakis MI (2001) Tumour angiogenesis and response to radiotherapy. Anticancer Res 21:4285–4300

    PubMed  CAS  Google Scholar 

  • Kozin SV, Boucher Y, Hicklin DJ, Bohlen P, Jain RK, Suit HD (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 6:39–44

    Google Scholar 

  • Kozin SV, Boucher Y, di Tomaso E, Padera TP, Xavier R, Hicklin DJ, Bohlen P, Jain RK (2002) Glomerulopathy in mice treated with whole-body irradiation and VEGFR2-blocking antibody (abstract). 49th Annual Meeting of the Radiation Research Society, Reno, Nevada, p 65

    Google Scholar 

  • Kuenen BC, Rosen L, Smit EF, Parson MR, Levi M, Ruijter R, Huisman H, Kedde MA, Noordhuis P, van der Vijgh WJ, Peters GJ, Cropp GF, Scigalla P, Hoekman K, Pinedo HM, Giaccone G (2002) Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol 20:1657–1667

    Article  PubMed  CAS  Google Scholar 

  • Laird AD, Vajkoczy P, Shawver LK, Thurnher A, Liang C, Mohammadi M, Schlessinger J, Ullrich A, Hubbard SR, Blake RA, Fong TA, Strawn LM, Sun L, Tang C, Hawtin R, Tang F, Shenoy N, Hirth KP, McMahon G, Cherrington JF (2000) SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res 60:4152–4160

    PubMed  CAS  Google Scholar 

  • Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, Boucher Y (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60:5565–5570

    PubMed  CAS  Google Scholar 

  • Leith JT, Papa G, Quaranto L, Michelson S (1992) Modification of the volumetric growth responses and steady-state hypoxic fractions of xenografted DLD-2 human colon carcinomas by administration of basic fibroblast growth factor or suramin. Br J Cancer 66:345–348

    Article  PubMed  CAS  Google Scholar 

  • Lin P, Sankar S, Shan S, Dewhirst MW, Polverini PJ, Quinn TQ, Peters KG (1998) Inhibition of tumor growth by targeting tumor endothelium using a soluble vascular endothelial growth factor receptor. Cell Growth Differ 9:49–58

    PubMed  CAS  Google Scholar 

  • Machein MR, Risau W, Plate KH (1999) Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum Gene Ther 10:1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Margolin K, Gordon MS, Holmgren E, Gaudreault J, Novotny W, Fyfe G, Adelman D, Stalter S, Breed J (2001) Phase Ib trial of intravenous recombinant humanized monoclonal antibody to vascular endothelial growth factor in combination with chemotherapy in patients with advanced cancer: pharmacologic and long-term safety data. J Clin Oncol 19:851–856

    PubMed  CAS  Google Scholar 

  • Marx GM, Steer CB, Harper P, Pavlakis N, Rixe O, Khayat D (2002) Unexpected serious toxicity with chemotherapy and antiangiogenic combinations: time to take stock! J Clin Oncol 20:1446–1448

    PubMed  Google Scholar 

  • Mendel DB, Schreck RE, West DC, Li G, Strawn LM, Tanciongco SS, Vasile S, Shawver LK, Cherrington JM (2000) The angiogenesis inhibitor SU5416 has long-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res 6:4848–4858

    PubMed  CAS  Google Scholar 

  • Murata R, Nishimura Y, Hiraoka M (1997) An antiangiogenic agent (TNP-470) inhibited reoxygenation during fractionated radiotherapy of murine mammary carcinoma. Int J Radiat Oncol Biol Phys 37:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Ning S, Laird D, Cherrington JM, Knox SJ (2002) The antiangiogenic agents SU5416 and SU6668 increase the antitumor effects of fractionated irradiation. Radiat Res 157:45–51

    Article  PubMed  CAS  Google Scholar 

  • Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS (1998) Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci U S A 95:3609–3614

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly MS, Holmgren L, Chen C, Folkman J (1996) Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2:689–692

    Article  PubMed  Google Scholar 

  • O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    Article  PubMed  Google Scholar 

  • Parry TJ, Cushman C, Gallegos AM, Agrawal AB, Richardson M, Andrews LE, Maloney L, Mokler VR, Wincott FE, Pavco PA (1999) Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA. Nucleic Acids Res 27: 2569–2577

    Article  PubMed  CAS  Google Scholar 

  • Presta LG, Chen H, O’Connor SJ, Chisholm V, Meng YG, Krummen L, Winkler M, Ferrara N (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    PubMed  CAS  Google Scholar 

  • Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin DJ (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59:5209–5218

    PubMed  CAS  Google Scholar 

  • Ramakrishnan S, Olson TA, Bautch VL, Mohanraj D (1996) Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 56:1324–1330

    PubMed  CAS  Google Scholar 

  • Rockwell P, O’Connor WJ, King K, Goldstein NI, Zhang LM, Stein CA (1997) Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci U S A 94:6523–6528

    Article  PubMed  CAS  Google Scholar 

  • Rosen LS (2002) Clinical experience with angiogenesis signaling inhibitors: focus on vascular endothelial growth factor (VEGF) blockers. Cancer Control 9[Suppl 2]:36–44

    PubMed  Google Scholar 

  • Rosen L, Mulay M, Mayers A et al (1999) Phase I dose-escalating trial of SU5416, a novel angiogenesis inhibitor in patients with advanced malignancies (abstract 618). Proc Am Soc Clin Oncol 18:161a

    Google Scholar 

  • Shaheen RM, Davis DW, Liu W, Zebrowski BK, Wilson MR, Bucana CD, McConkey DJ, McMahon G, Ellis LM (1999) Antiangiogenic therapy targeting the tyrosine kinase receptor for vascular endothelial growth factor receptor inhibits the growth of colon cancer liver metastasis and induces tumor and endothelial cell apoptosis. Cancer Res 59:5412–5416

    PubMed  CAS  Google Scholar 

  • Siemann DW, Warrington KH, Horsman MR (2000) Targeting tumor blood vessels: an adjuvant strategy for radiation therapy. Radiother Oncol 57:5–12

    Article  PubMed  CAS  Google Scholar 

  • Stoletov KV, Ratcliffe KE, Spring SC, Terman BI (2001) NCK and PAK participate in the signaling pathway by which vascular endothelial growth factor stimulates the assembly of focal adhesions. J Biol Chem 276:22748–22755

    Article  PubMed  CAS  Google Scholar 

  • Stopeck A (2000) Results of a phase I dose-escalating study of the antiangiogenic agent, SU5416, in patients with advanced malignancies. Proc Am Soc Clin Oncol 19:206a (abstract 802)

    Google Scholar 

  • Tao Q, Backer MV, Backer JM, Terman BI (2001) Kinase insert domain receptor (KDR) extracellular immunoglobulin-like domains 4-7 contain structural features that block receptor dimerization and vascular endothelial growth factor-induced signaling. J Biol Chem 276:21916–21923

    Article  PubMed  CAS  Google Scholar 

  • Teicher BA, Sotomayor EA, Huang ZD (1992) Antiangiogenic agents potentiate cytotoxic cancer therapies against primary and metastatic disease. Cancer Res 52:6702–6704

    PubMed  CAS  Google Scholar 

  • Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212

    PubMed  CAS  Google Scholar 

  • Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Curwen JO, Hennequin LF, Thomas AP, Stokes ES, Curry B, Richmond GH, Wadsworth PF (2000) ZD4190: an orally active inhibitor of vascular endothelial growth factor signaling with broad-spectrum antitumor efficacy. Cancer Res 60:970–975

    PubMed  CAS  Google Scholar 

  • Witte L, Fuks Z, Haimovitz-Friedman A, Vlodavsky I, Goodman DS, Eldor A (1989) Effects of irradiation on the release of growth factors from cultured bovine, porcine, and human endothelial cells. Cancer Res 49:5066–5072

    PubMed  CAS  Google Scholar 

  • Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O’Reilly T, Persohn E, Rosel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60:2178–2189

    PubMed  CAS  Google Scholar 

  • Wright EA, Howard-Flanders P (1957) The influence of oxygen on the radiosensitivity of mammalian tissues. Acta Radiol 48:26–32

    Article  PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  PubMed  CAS  Google Scholar 

  • Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/ vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Griffith EC, Sage J, Jacks T, Liu JO (2000) Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc Natl Acad Sci USA 97:6427–6432

    Article  PubMed  CAS  Google Scholar 

  • Zips D, Krause M, Westphal J, Brüchner K, Eicheler W, Dörfler A, Hoinkis C, Grenman R, Petersen C, Baumann M (2001) Combination of VEGF receptor tyrosine kinase inhibition by ZK 222584/ PTK 787 (ZK) with fractionated radiotherapy (RT) in human squamous cell carcinoma (hSCC) in nude mice: first results. Radiother Oncol 60[Suppl 2]: S19

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zips, D., Baumann, M. (2003). Anti-VEGF Strategies in Combination with Radiotherapy. In: Nieder, C., Milas, L., Ang, K.K. (eds) Modification of Radiation Response. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55613-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55613-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62670-8

  • Online ISBN: 978-3-642-55613-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics