Skip to main content

Contributing Factors to Success Rate of Orthodontic Mini-implants: Important but Ignored Results from Basic Researches

  • Chapter
  • First Online:
Temporary Skeletal Anchorage Devices

Abstract

Among the numerous factors that can affect success or failure rates of orthodontic mini-implants (OMIs), some factors are well studied but others are neglected or ignored in spite of basic and clinical importance. The purpose of this chapter was to describe important but ignored results from basic researches such as shape and microstructure of OMIs, surface treatment of OMIs, predrilling before OMI installation, microdamage in the cortical bone, wobbling of OMIs during manual installation, root contact with OMIs, and fracture properties of OMIs. If more concern about these issues would be given, better clinical results might be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofac Orthop. 2003;124:373–8.

    Article  Google Scholar 

  2. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants. 2004;19:100–6.

    PubMed  Google Scholar 

  3. Park HS, Jeong SH, Kwon OW. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofac Orthop. 2006;130:18–25.

    Article  Google Scholar 

  4. Chen CH, Chang CS, Hsieh CH, Tseng YC, Shen YS, Huang IY, et al. The use of microimplants in orthodontic anchorage. J Oral Maxillofac Surg. 2006;64:1209–13.

    Article  PubMed  Google Scholar 

  5. Kim JW, Cho IS, Lee SJ, Kim TW, Chang YI. Effect of dual pitch mini-implant design and diameter of an orthodontic mini-implant on the insertion and removal torque. Korean J Orthod. 2006;36:275–83.

    Google Scholar 

  6. Motoyoshi M, Hirabayashi M, Uemura M, Shimizu N. Recommended placement torque when tightening an orthodontic mini-implant. Clin Oral Implants Res. 2006;17:109–14.

    Article  PubMed  Google Scholar 

  7. Wiechmann D, Meyer U, Büchter A. Success rate of mini- and micro-implants used for orthodontic anchorage: a prospective clinical study. Clin Oral Implants Res. 2007;18:263–7.

    Article  PubMed  Google Scholar 

  8. Moon CH, Lee DG, Lee HS, Im JS, Baek SH. Factors associated with the success rate of orthodontic miniscrews placed in the upper and lower posterior buccal region. Angle Orthod. 2008;78:101–6.

    Article  PubMed  Google Scholar 

  9. Melsen B, Costa A. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res. 2000;3:23–8.

    Article  PubMed  Google Scholar 

  10. Kim JW, Ahn SJ, Chang YI. Histomorphometric and mechanical analyses of the drill-free screw as orthodontic anchorage. Am J Orthod Dentofac Orthop. 2005;128:190–4.

    Article  Google Scholar 

  11. Wilmes B, Rademacher C, Olthoff G, Drescher D. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop. 2006;67:162–74.

    Article  PubMed  Google Scholar 

  12. Motoyoshi M, Yoshida T, Ono A, Shimizu N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implants. Int J Oral Maxillofac Implants. 2007;22:779–84.

    PubMed  Google Scholar 

  13. Kim JW, Baek SH, Kim TW, Chang YI. Comparison of stability between cylindrical and conical type mini-implants. Mechanical and histological properties. Angle Orthod. 2008;78:692–8.

    Article  PubMed  Google Scholar 

  14. Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length. Angle Orthod. 2008;78:234–40.

    Article  PubMed  Google Scholar 

  15. Wilmes B, Ottenstreuer S, Su YY, Drescher D. Impact of implant design on primary stability of orthodontic mini-implants. J Orofac Orthop. 2008;69:42–50.

    Article  PubMed  Google Scholar 

  16. Cho IS, Kim SK, Chang YI, Baek SH. In vitro and in vivo mechanical stability of orthodontic mini-implants. Angle Orthod. 2012;82:611–7.

    Article  PubMed  Google Scholar 

  17. Martinez H, Davarpanah M, Missika P, Celletti R, Lazzara R. Optimal implant stabilization in low density bone. Clin Oral Implants Res. 2001;12:423–32.

    Article  PubMed  Google Scholar 

  18. O’Sullivan D, Sennerby L, Meredith N. Influence of implant taper on the primary and secondary stability of osseointegrated titanium implants. Clin Oral Implants Res. 2004;15:474–80.

    Article  PubMed  Google Scholar 

  19. Siegele D, Soltesz U. Numerical investigation of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants. 1989;4:333–40.

    PubMed  Google Scholar 

  20. Chehroudi B, Gould TR, Brunette DM. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vivo. J Biomed Mater Res. 1990;24:1203–19.

    Article  PubMed  Google Scholar 

  21. Chehroudi B, Gould TR, Brunette DM. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants. J Biomed Mater Res. 1992;26:493–515.

    Article  PubMed  Google Scholar 

  22. Kim TW, Baek SH, Kim JW, Chang YI. Effects of microgrooves on the success rate and soft tissue adaptation of orthodontic miniscrews. Angle Orthod. 2008;78:1057–64.

    Article  PubMed  Google Scholar 

  23. Klokkevold PR, Nishimura RD, Adachi M, Caputo A. Osseointegration enhanced by chemical etching of the titanium surface: a torque removal study in the rabbit. Clin Oral Implants Res. 1997;8:442–7.

    Article  PubMed  Google Scholar 

  24. Cordioli G, Majzoub Z, Piattelli A, Scarano A. Removal torque and histomorphometric investigation of 4 different titanium surfaces: an experimental study in the rabbit tibia. Int J Oral Maxillofac Implants. 2000;15:668–74.

    PubMed  Google Scholar 

  25. Klokkevold PR, Johnson P, Dadgostari S, Caputo A, Davies JE, Nishimura RD. Early endosseous integration enhanced by dual acid etching of titanium: a torque removal study in the rabbit. Clin Oral Implants Res. 2001;12:350–7.

    Article  PubMed  Google Scholar 

  26. Lim YJ, Oshida Y, Andres CJ, Barco MT. Surface characterizations of variously treated titanium materials. Int J Oral Maxillofac Implants. 2001;16:333–42.

    PubMed  Google Scholar 

  27. Cho SA, Park KT. The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials. 2003;24:3611–7.

    Article  PubMed  Google Scholar 

  28. Cho SA, Jung SK. A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials. 2003;24:4859–63.

    Article  PubMed  Google Scholar 

  29. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants: a histomorphometric study in miniature pigs. J Biomed Mater Res. 1991;25:889–902.

    Article  PubMed  Google Scholar 

  30. Yamagami A, Yoshihara Y, Suwa F. Mechanical and histologic examination of titanium alloy material treated by sandblasting and anodic oxidization. Int J Oral Maxillofac Implants. 2005;20:48–53.

    PubMed  Google Scholar 

  31. Aalam AA, Nowzari H. Clinical evaluation of dental implants with surfaces roughened by anodic oxidation, dual acid-etched implants, and machined implants. Int J Oral Maxillofac Implants. 2005;20:793–8.

    PubMed  Google Scholar 

  32. Kim SH, Lee SJ, Cho IS, Kim SK, Kim TW. Rotational resistance of surface-treated mini-implants. Angle Orthod. 2009;79:899–907.

    Article  PubMed  Google Scholar 

  33. Karmarker S, Yu W, Kyung HM. Effect of surface anodization on stability of orthodontic microimplant. Korean J Orthod. 2012;42:4–10.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Cho KC, Baek SH. Effects of predrilling depth and implant shape on the mechanical properties of orthodontic mini-implants during the insertion procedure. Angle Orthod. 2012;82:618–24.

    Article  PubMed  Google Scholar 

  35. Lee NK, Baek SH. Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am J Orthod Dentofac Orthop. 2010;138:8.e1–8.

    Google Scholar 

  36. Huja SS, Katona TR, Burr DB, Garetto LP, Roberts WE. Micro-damage adjacent to endosseous implants. Bone. 1999;25:217–22.

    Article  PubMed  Google Scholar 

  37. Martin RB. Fatigue microdamage as an essential element of bone mechanics and biology. Calcif Tissue Int. 2003;73:101–7.

    Article  PubMed  Google Scholar 

  38. Wawrzinek C, Sommer T, Fischer-Brandies H. Microdamage in cortical bone due to the overtightening of orthodontic micro-screws. J Orofac Orthop. 2008;69:121–34.

    Article  PubMed  Google Scholar 

  39. Gambarini G. Rationale for the use of low-torque endodontic motors in root canal instrumentation. Endod Dent Traumatol. 2000;16:95–100.

    Article  PubMed  Google Scholar 

  40. Yared GM, Bou Dagher FE, Machtou P. Failure of ProFile instruments used with high and low torque motors. Int Endod J. 2001;34:471–5.

    Article  PubMed  Google Scholar 

  41. Kim JS, Choi SH, Cha SK, Kim JH, Lee HJ, Yeom SS, Hwang CJ. Comparison of success rates of orthodontic mini-screws by the insertion method. Korean J Orthod. 2012;42:242–8.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cho IS, Baek SH, Kim YH. Effects of wobbling angle on the stability measures of orthodontic mini-implants during insertion and removal procedures. Angle Orthod. 2013;83:1009–14.

    Google Scholar 

  43. Kravitz ND, Kusnoto B. Risks and complications of orthodontic miniscrews. Am J Orthod Dentofac Orthop. 2007;131:S43–51.

    Article  Google Scholar 

  44. Lee YK, Kim JW, Baek SH, Kim TW, Chang YI. Root and bone response to the proximity of a mini-implant under orthodontic loading. Angle Orthod. 2010;80:452–8.

    Article  PubMed  Google Scholar 

  45. Liou EJ, Pai BC, Lin JC. Do miniscrews remain stationary under orthodontic forces? Am J Orthod Dentofac Orthop. 2004;126:42–7.

    Article  Google Scholar 

  46. Kuroda S, Sugawara Y, Deguchi T, Kyung HM, Takano-Yamamoto T. Clinical use of miniscrew implants as orthodontic anchorage: success rates and postoperative discomfort. Am J Orthod Dentofac Orthop. 2007;131:9–15.

    Article  Google Scholar 

  47. Asscherickx K, Vande Vannet B, Wehrbein H, Sabzevar MM. Success rate of miniscrews relative to their position to adjacent roots. Eur J Orthod. 2008;30:330–5.

    Article  PubMed  Google Scholar 

  48. Kim SH, Kang SM, Choi YS, Kook YA, Chung KR, Huang JC. Cone-beam computed tomography evaluation of mini-implants after placement: is root proximity a major risk factor for failure? Am J Orthod Dentofac Orthop. 2010;138:264–76.

    Article  Google Scholar 

  49. Wilmes B, Su YY, Sadigh L, Drescher D. Pre-drilling force and insertion torques during orthodontic mini-implant insertion in relation to root contact. J Orofac Orthop. 2008;69:51–8.

    Article  PubMed  Google Scholar 

  50. Lima GM, Soares MS, Penha SS, Romano MM. Comparison of the fracture torque of different Brazilian mini-implants. Braz Oral Res. 2011;25:116–21.

    Article  PubMed  Google Scholar 

  51. Cho IS, Kim TW, Ahn SJ, Yang IH, Baek SH. Effects of insertion angle and implant thread type on the fracture properties of orthodontic mini-implants during insertion. Angle Orthod. 2013;83:698–704.

    Article  PubMed  Google Scholar 

  52. Carano A, Velo S, Incorvati C, Poggio P. Clinical applications of the mini-screw-anchorage-system (M.A.S.) in the maxillary alveolar bone. Prog Orthod. 2004;5:212–35.

    PubMed  Google Scholar 

  53. Barros SE, Janson G, Chiqueto K, Garib DG, Janson M. Effect of mini-implant diameter on fracture risk and self-drilling efficacy. Am J Orthod Dentofac Orthop. 2011;140:e181–92.

    Article  Google Scholar 

  54. Brisceno CE, Rossouw PE, Carrillo R, Spears R, Buschang PH. Healing of the roots and surrounding structures after intentional damage with miniscrew implants. Am J Orthod Dentofac Orthop. 2009;135:292–301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Sik Cho DDS, MSD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cho, IS., Baek, SH. (2014). Contributing Factors to Success Rate of Orthodontic Mini-implants: Important but Ignored Results from Basic Researches. In: Kim, K. (eds) Temporary Skeletal Anchorage Devices. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55052-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-55052-2_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-55051-5

  • Online ISBN: 978-3-642-55052-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics