Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 813 Accesses

Abstract

It was discussed in Chap. 2 that the non-negligible thermomass inertia will cause non-Fourier heat conduction in steady states, for example, the heat flow choking phenomenon. In this chapter, the experimental evidence is given for the steady non-Fourier heat conduction under the ultra-high heat flux and low temperature conditions. As the foundation of the theoretical prediction, the electrical and thermal conductivities of the metallic nanofilms have been accurately measured in a wide temperature range. Meanwhile, the breakdown of Wiedemann–Franz law at low temperatures is observed in the experiment.

Some figures in this chapter are reprinted from “Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms, 47, Hai-Dong Wang et al.” Copyright [2011], with permission from Springer.

Some figures in this chapter are reprinted from “Non-Fourier heat conduction study for steady states in metallic nanofilms, 57, Hai-Dong Wang et al.” Copyright [2012], with permission from Springer.

Some figures in this chapter are reprinted from “Breakdown of Wiedemann-Franz law in individual suspended polycrystalline gold nanofilms down to 3K, 66, Haidong Wang, Jinhui Liu, Xing Zhang, Koji Takahashi, 585–591.” Copyright [2013], with permission from Elsevier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q.G. Zhang, B.Y. Cao, X. Zhang, M. Fujii, K. Takahashi, Size effects on the thermal conductivity of polycrystalline platinum nanofilms. J. Phys. Condens. Matter 18, 7937–7950 (2006)

    Article  ADS  Google Scholar 

  2. K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals. Proc. Cambridge Phil. Soc. 34, 100–108 (1938)

    Article  ADS  Google Scholar 

  3. E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 1, 1–42 (1952)

    Article  ADS  Google Scholar 

  4. J.W.C. De Vries, Temperature and thickness dependence of the resistivity of thin polycrystalline aluminum, cobalt, nickel, palladium, silver and gold films. Thin Solid Films 167, 25–32 (1988)

    Article  ADS  Google Scholar 

  5. A.F. Mayadas, M. Shatzkes, J.F. Janak, Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl. Phys. Lett. 14(11), 345–347 (1969)

    Article  ADS  Google Scholar 

  6. A.F. Mayadas, M. Shatzkes, Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1(4), 1382–1389 (1970)

    Article  ADS  Google Scholar 

  7. W. Kappus, O. Weis, Radiation temperature and radiation power of thermal phonon radiators using diamond as transmission medium. J. Appl. Phys. 44(5), 1947–1952 (1973)

    Article  ADS  Google Scholar 

  8. C.R. Tellier, A.J. Tosser, The temperature coefficient of resistivity of polycrystalline radio frequency sputtered aluminum films. Thin Solid Films 43, 261–266 (1977)

    Article  ADS  Google Scholar 

  9. T.Q. Qiu, C.L. Tien, Femtosecond laser heating of multi-layer metalsłi. analysis. Int. J. Heat Mass Transfer 37(17), 2789–2797 (1994)

    Article  Google Scholar 

  10. T.Q. Qiu, C.L. Tien, Femtosecond laser heating of multi-layer metalsłi. experiments. Int. J. Heat Mass Transfer 37(17), 2799–2808 (1994)

    Article  Google Scholar 

  11. A. Vedavarz, K. Mitra, S. Kumar, Hyperbolic temperature profiles for laser surface interactions. J. Appl. Phys. 76(9), 5014–5021 (1994)

    Article  ADS  Google Scholar 

  12. J.M. Ziman, Electrons and phonons, the theory of transport phenomena in solids, vol. 260 (Clarendon, Oxford, 1960)

    MATH  Google Scholar 

  13. C.L. Tien, A. Majumdar, F.M. Gerner, Microscale energy transport, vol. 28 (Taylor & Francis, Washington DC, 1997)

    Google Scholar 

  14. N. Stojanovic, D.H.S. Maithripala, J.M. Berg, M. Holtz, Thermal conductivity in metallic nanostructures at high temperature: electrons, phonons, and the wiedemann franz law. Phys. Rev. B 82, 075418 (2010)

    Article  ADS  Google Scholar 

  15. A. Smekal, Zur quantentheorie der dispersion. Naturwissenschaften 11, 873 (1923)

    Article  ADS  Google Scholar 

  16. H.A. Kramers, W. Heisenberg, Inverse raman spectra: induced absorption at optical frequencies. Z. Phys. 31, 681 (1925)

    Article  ADS  MATH  Google Scholar 

  17. E. Schrödinger, An undulatory theory of the mechanics of atoms and molecules. Ann. Phys. 81, 109 (1926)

    Article  MATH  Google Scholar 

  18. P.A.M. Dirac, Two-photon processes in complex atoms. Proc. Roy. Soc. Lon. A 114, 710 (1927)

    Article  ADS  MATH  Google Scholar 

  19. C.V. Raman, K.S. Krishnan, A new type of secondary radiation. Nature 121, 501 (1928)

    Article  ADS  Google Scholar 

  20. G. Landsberg, L. Mandelstam, Eine neue erscheinung bei der lichtzerstreuung. Naturwissenschaften 16, 557 (1928)

    Article  Google Scholar 

  21. G. Wiedemann, R. Franz, Ueber die wärme-leitungsfähigkeit der metalle. Ann. Phys. Chem. 89, 497 (1853)

    Google Scholar 

  22. A. Sommerfeld, Zur elektronentheorie der metalle auf grund der fermischen statistic. Naturwissenschaften 15, 825 (1927)

    Article  ADS  MATH  Google Scholar 

  23. E.W. Fenton, J.S. Rogers, S.B. Woods, Lorenz numbers of pure aluminum, silver, and gold at low temperatures. Can. J. Phys. 41, 2026 (1963)

    Article  ADS  Google Scholar 

  24. G.K. White, R.J. Tainsh, Electron scattering in nickel at low temperatures. Phys. Rev. Lett. 19, 165 (1967)

    Article  ADS  Google Scholar 

  25. G.S. Kumar, G. Prasad, R.O. Pohl, Review, experimental determinations of the Lorenz number. J. Mater. Sci. 28, 4261–4272 (1993)

    Article  ADS  Google Scholar 

  26. C.R. Tellier, L. Ouarbya, A.J. Tosser, Effects of electron scatterings on thermal conductivity of thin metal films. J. Mater. Sci. 16, 2287 (1981)

    Article  ADS  Google Scholar 

  27. W.G. Ma, H.D. Wang, X. Zhang, K. Takahashi, Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms. Chin. Phys. B 18, 2035 (2009)

    Article  ADS  Google Scholar 

  28. H.D. Wang, J.H. Liu, X. Zhang, Z.Y. Guo, K. Takahashi, Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms. Heat Mass Transfer 47, 893–898 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Dong Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, HD. (2014). Experimental Proof of Steady-State Non-Fourier Heat Conduction. In: Theoretical and Experimental Studies on Non-Fourier Heat Conduction Based on Thermomass Theory. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53977-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-53977-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53976-3

  • Online ISBN: 978-3-642-53977-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics