Skip to main content
Log in

Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The electrical and thermal conductivities of polycrystalline gold and platinum nanofilms have been measured simultaneously using a direct current heating method from 60 to 300 K. The measured electrical and thermal conductivities are greatly decreased from the corresponding bulk values. And it is found that the reduction increases as the temperature decreases. The deviation from the bulk value is due to the effect of grain boundary scattering. Furthermore, the experimental results indicate that the grain boundary scattering effect imposes greater influence to the charge transport than to the heat transport. Consequentially, the Lorentz number is several times larger than that of bulk materials, leading to the violation of the Wiedemann–Franz law. The reflection coefficient R (0.86 in platinum, 0.42 in gold) at grain boundaries is obtained based on the Mayadas-Shatzkes theory and Matthiessen’s rule, which agrees well with the previous experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C v :

Specific heat of heat (J Kg−1 K−1)

d :

Mean diameter of grains (m)

e :

Elementary charge (C)

k B :

Boltzmann constant (J K−1)

l b :

Mean free path of bulk material (m)

L b :

Lorenz number of bulk material (WΩ K−2)

m :

Electron mass (Kg)

n :

Electron density (m−3)

R :

Reflection coefficient at grain boundaries

T :

Temperature (K)

v F :

Fermi velocity (ms−1)

α = l b R/d(1 − R):

Combined parameter in MS law

ζ c :

Constant Lorentz number (WΩ K−2)

θ :

Debye temperature (K)

λ rel :

Relative thermal conductivity

λ f :

Thermal conductivity of nanofilm (Wm−1 K−1)

λ b :

Thermal conductivity of bulk material (Wm−1 K−1)

ρ :

Electrical resistivity (Ωm)

ρ 0 :

Zero-point electrical resistivity (Ωm)

ρ ee :

Electron–electron scattering term (Ωm K−2)

ρ sd :

Inter-band electron scattering term (Ωm K−3)

ρ ss :

Intra-band electron scattering term (Ωm K−5)

σ rel :

Relative electrical conductivity

σ f :

Electrical conductivity of nanofilm (Ω−1 m−1)

σ b :

Electrical conductivity of bulk material (Ω−1 m−1)

τ :

Relaxation time (s)

References

  1. Chigvinadze DG, Shukhman VA (1963) Application of printed circuits for memory elements made of thin metallic films. Instrum Exp Tech 5:993

    Google Scholar 

  2. Craighead HG (2000) Nanoelectromechanical systems. Science 290(5496):1532–1535

    Article  Google Scholar 

  3. Fuchs K (1938) The conductivity of thin metallic films according to the electron theory of metals. Proc Camb Philos Soc 34:100–108

    Article  Google Scholar 

  4. Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1(1):1–42

    Article  Google Scholar 

  5. Mayadas AF, Shatzkes M, Janak JF (1969) Electrical resistivity model for polycrystalline films—case of specular reflection at external surfaces. Appl Phys Lett 14(11):345–347

    Article  Google Scholar 

  6. Mayadas AF, Shatzkes M (1970) Electrical-resistivity model for polycrystalline films—case of arbitrary reflection at external surfaces. Phys Rev B 1(4):1382–1389

    Article  Google Scholar 

  7. Van Attekum PMTM, Woerlee PH, Verkade GC, Hoeben AAM (1984) Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films. Phys Rev B 29(2):645–650

    Article  Google Scholar 

  8. De Vries JWC (1987) Temperature-dependent resistivity measurements on polycrystalline sio2-covered thin gold-films. Thin Solid Films 150(2–3):201–208

    Google Scholar 

  9. De Vries JWC (1987) Resistivity of thin au films as a function of grain diameter and temperature. J Phys F Met Phys 17(9):1945–1952

    Article  Google Scholar 

  10. Schneider MA, Wenderoth M, Heinrich AJ, Rosentreter MA, Ulbrich RG (1996) Current transport through single grain boundaries: a scanning tunneling potentiometry study. Appl Phys Lett 69(9):1327–1329

    Article  Google Scholar 

  11. Durkan C, Welland ME (2000) Size effects in the electrical resistivity of polycrystalline nanowires. Phys Rev B 61(20):14215–14218

    Article  Google Scholar 

  12. Kittel C (1996) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  13. Qiu TQ, Tien CL (1993) Size effects on nonequilibrium laser-heating of metal-films. J Heat Transf 115(4):842–847

    Article  Google Scholar 

  14. Chen G, Hui P (1999) Thermal conductivities of evaporated gold films on silicon and glass. Appl Phys Lett 74(20):2942–2944

    Article  Google Scholar 

  15. Hostetler JL, Smith AN, Czajkowsky DM, Norris PM (1999) Measurement of the electron-phonon coupling factor dependence on film thickness and grain size in Au, Cr, and Al. Appl Opt 38(16):3614–3620

    Article  Google Scholar 

  16. Zhang X, Xie HQ, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T (2005) Thermal and electrical conductivity of a suspended platinum nanofilm. Appl Phys Lett 86(17):171912

    Article  Google Scholar 

  17. Zhang X, Zhang QG, Cao BY, Fujii M, Takahashi K, Ikuta T (2006) Experimental studies on thermal and electrical properties of platinum nanofilms. Chin Phys Lett 23(4):936–938

    Article  Google Scholar 

  18. Zhang X, Xie HQ, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H, Shimizu T (2005) Thermal and electrical properties of a suspended nanoscale thin film. In: Proceedings of the 17th European conference on thermophysical properties. Sydney, Australia

  19. Zhang QG, Cao BY, Zhang X, Fujii M, Takahashi K (2006) Influence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms. Phys Rev B 74:134109

    Article  Google Scholar 

  20. Ma WG, Wang HD, Zhang X, Takahashi K (2009) Different effects of grain boundary scattering on charge and heat transport in polycrystalline platinum and gold nanofilms. Chin Phys B 18(5):2035–2040

    Article  Google Scholar 

  21. Blackman M, Egerton A, Truter EV (1948) Heat transfer by radiation to surfaces at low temperatures. Proc R Soc Lond A 194:147–169

    Article  Google Scholar 

  22. Kappus W, Weis O (1973) Radiation temperature and radiation power of thermal phonon radiators using diamond as transmission medium. J Appl Phys 44(5):1947–1952

    Article  Google Scholar 

  23. Zhang QG, Cao BY, Zhang X, Fujii M, Takahashi K (2006) Size effects on the thermal conductivity of polycrystalline platinum nanofilms. J Phys Condens Matter 18(34):7937–7950

    Article  Google Scholar 

  24. Zhang QG, Cao BY, Zhang X, Fujii M, Takahashi K, Zhu LY (2007) Proceedings of the international conference on integration and commercialization of micro and nanosystems. Sanya, China

  25. Ziman JM (1960) Electrons and phonons. Oxford University Press, London

    MATH  Google Scholar 

  26. Poker DB, Klabunde CE (1982) Temperature dependence of electrical resistivity of vanadium, platinum and copper. Phys Rev B 26(12):7012–7014

    Article  Google Scholar 

  27. Yoshitake N, Akira I, Kaoru M (1987) Temperature dependence of electrical resistivity for gold and lead. J Mater Sci Lett 6:87–88

    Article  Google Scholar 

  28. Touloukian YS, Powell RW, Ho CY, Klemens PG (1970) Thermophysical properties of matter volume 1: thermal conductivity (metallic elements and alloys). IFI/Plenum Data Corporation, New York

    Google Scholar 

Download references

Acknowledgments

This project was supported by National Natural Science Foundation of China (Grant Nos. 51076080, 50730006 and 50976053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhang.

Additional information

Dedicated to Prof. Dr.-Ing. Dr.-Ing. E.h. Mult. Franz Mayinger on the occasion of his 80th bithday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HD., Liu, JH., Zhang, X. et al. Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms. Heat Mass Transfer 47, 893–898 (2011). https://doi.org/10.1007/s00231-011-0825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0825-5

Keywords

Navigation