Skip to main content

Drugs and Leads from the Ocean Through Biotechnology

  • Chapter
Springer Handbook of Marine Biotechnology

Abstract

The ocean’s uniqueness represents an excellent source of resources and inspiration of diverse marine natural products with novel chemical entities and leads for the development of pharmaceutical agents. During the last 10 years, interest in research and development by the scientific community in this niche have continued as evidenced from joint ventures between academics, mainly partnered with industry. Drugs of marine origin that have now been approved represent excellent and novel alternatives for the following therapies and disease treatments. For neuropathic pain, a synthetic version of omega-conotoxin, produced by the tropical marine Conus snail is already on the pharmaceutical market. The ecteinascidins (GlossaryTerm

ET-743

) are marine alkaloid, anticancer agents isolated from Ecteinascidia turbinate, a colonial tunicate found in the Caribbean and Mediterranean Sea, and are successfully used for soft tissue sarcoma and relapsed ovarian cancer. The synthetic pyrimidine nucleoside Cytarabine, was originally isolated from the Caribbean sponge Tethya crypta, and approved as a chemotherapeutic to treat different forms of leukemia (e. g., meningeal leukemia, lymphocytic leukemia). From this marine sponge, also the synthetic purine nucleoside analog, Vidarabine, was developed as an antiviral drug against the herpes simplex virus and the varicella-zoster virus for the treatment of epithelial keratitis, viz, ophthalmic applications. In 2012, squalamine was been awarded Fast Track designation by the US Food and Drug Administration (GlossaryTerm

FDA

) for the potential treatment of the wet form of macular degeneration. These successful advances have had to overcome difficulties characteristic of marine natural products to become drugs, viz, sustainable sources, structural complexity, and toxicity, the same as the marine molecules in preclinical and clinical trials. In this chapter, the current advances and modern approaches of marine natural products and respective bioactive metabolites with potential and real functions as drugs leads are succinctly reviewed and particularly exemplified. An important aspect of this chapter is the analysis of marine natural products in relation to new paradigms and particularities of other disciplines, such as genomics, combinatorial chemistry, biosynthesis, and functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATCC:

American Type Culture Collection

Ara-A:

arabinofuranosyl adenine or adenine arabinoside

vidarabine

Ara-C:

cytarabine

CAS:

chemical abstracts service

CoA:

coenzyme A

Cytosar-U1:

Cytarabine

DMAPP:

dimethylallyl pyrophosphate

DNA:

deoxyribonucleic acid

DXP:

1-deoxy-xylulose-5-phosphate

ET-743:

ecteinascidins

FAO:

Food and Agriculture Organization

FDA:

Food and Drug Administration

GRAS:

generally recognized as safe

IPP:

isopentyl pyrophosphate

KF:

Kahalalide F

MVL:

mevalonate

NER:

nucleotide excision repair

NRPS:

nonribosomal peptide synthetase

NSCLC:

non-small cell lung cancer

NVSCC:

N-type voltage-sensitive calcium channel

PE:

phycoerythrin

PKS:

polyketide synthase

Prialt1:

ziconotide

VEGF:

vascular endothelial growth factor

VGCC:

voltage-gated calcium channel

Vira-A1:

Vidarabine

References

  1. C.B. Spainhour: Natural products. In: Drug Discovery Handbook, ed. by Shayne Gad (John Wiley Sons, Hoboken 2005)

    Google Scholar 

  2. B.M. Olivera, W.R. Gray, R. Zeileus, J.M. McIntosh, J. Varga, J. Rivier, V. de Santos, L.Y. Cruz: Peptide neurotoxins from fish-hunting cone snails, Science 230(4732), 1338–1343 (1985)

    Article  CAS  Google Scholar 

  3. Y. Liu: Renaissance of marine natural products discovery and development, Mar. Sci. Res. Dev. 2, 2 (2012)

    Google Scholar 

  4. H. Sarfaraj, F. Sheebad, A. Saba, K. Sajid: Marine natural products. A lead for anticancer, Indian J. Geo-Mar. Sci. 41(1), 27–39 (2012)

    CAS  Google Scholar 

  5. J. Paniagua-Michel (Ed.): Productos naturales marinos, metabolitos con actividad biologica. In: Biotechnologia Marina (AGT Editors, Mexico City 2009) pp. 430

    Google Scholar 

  6. M.A. Piggott, K. Peter: Quality not quantity: The role of marine natural products in drug discovery and reverse chemcal proteomics, Mar. Drugs 3(2), 36–63 (2005)

    Article  CAS  Google Scholar 

  7. J.W. Blunt, B.R. Copp, M.H.G. Munro, P.T. Northcote, M.R. Prinsep: Marine natural products, Nat. Prod. Rep. 28, 196–268 (2011)

    Article  CAS  Google Scholar 

  8. C. Battershill, M. Jaspars, P. Long: Marine biodiscovery: New drugs from the ocean depths, Biologist 52(2), 107–114 (2005)

    Google Scholar 

  9. R.T. Hill, W. Fenical: Pharmaceuticals from marine natural products: Surge or ebb?, Curr. Opin. Biotechnol. 21, 777–779 (2010)

    Article  CAS  Google Scholar 

  10. A.M.S. Mayer, K.B. Glaser, C. Cuevas, R.S. Jacobs, W. Kem, R.D. Little, J.M. McIntosh, D.J. Newman, B.C. Potts, D.E. Shuster: The odyssey of marine pharmaceuticals: A current pipeline perspective, Trends Pharmacol. Sci. 31, 255–265 (2010)

    Article  CAS  Google Scholar 

  11. T.F. Molinski, D.S. Dalisay, S.L. Lievens, J.P. Saludes: Drug development from marine natural products, Nat. Rev. Drug Discov. 8, 69–85 (2009)

    Article  CAS  Google Scholar 

  12. H.E. Hannon, W.D. Atchison: Omega-conotoxins as experimental tools and therapeutics in pain management, Mar. Drugs 11, 680–699 (2013)

    Article  CAS  Google Scholar 

  13. A.B. Malmberg, T.L. Yaksh: Effect of continuous intrathecal infusion of ω-conopeptides, N-type calcium-channel blockers, on behavior and antinociception in the formalin and hot-plate tests in rats, Pain 60, 83–90 (1995)

    Article  CAS  Google Scholar 

  14. B.M. Olivera: Conus peptides: Biodiversity-based discovery and exogenomics, J. Biol. Chem. 281, 31173–31177 (2006)

    Article  CAS  Google Scholar 

  15. B.M. Olivera, R.W. Teichert: Diversity of the neurotoxic conus peptides: A model for concerted pharmacologic discovery, Mol. Interv. 7, 251–260 (2007)

    Article  CAS  Google Scholar 

  16. B.M. Olivera: ω-Conotoxin MVIIA: From marine snail venom to analgesic drug. In: Drugs from the Sea, ed. by N. Fusetani (Karger, Basel 2000) pp. 75–85

    Google Scholar 

  17. J.P. Bingham, E. Mitsunaga, Z.L. Bergeron: Drugs from slugs past, present and future perspectives of omega-conotoxin research, Chem. Biol. Interact. 183, 1–18 (2010)

    Article  CAS  Google Scholar 

  18. D. Chung, S. Gaur, J.R. Bell, J. Ramachandran, L. Nadasdi: Determination of disulfide bridge pattern in ω-conopeptides, Int. J. Pept. Protein Res. 46, 320–325 (1995)

    Article  CAS  Google Scholar 

  19. A. Schmidtko, J. Lötsch, R. Freynhagen, G. Geisslinger: Ziconotide for treatment of severe chronic pain, Lancet 375, 1569–1577 (2010)

    Article  CAS  Google Scholar 

  20. P.S. Staats, Y. Thomas, G.S. Charapata, R.W. Presley, M.S. Wallace, M. Byas-Smith, R. Fisher, D.A. Bryce, E.A. Mangieri, R.R. Luther, M.M. Pharm, D. McGuire, D. Ellis: Intrathecal ziconotide in the treatment of refractory pain in patients with cancer or AIDS A randomized controlled trial, J. Am. Med. Assoc. 291, 63–70 (2004)

    Article  CAS  Google Scholar 

  21. Y.X. Wang, D. Gao, M. Pettus, C. Phillips, S.S. Bowersox: Interactions of intrathecally administered ziconotide, a selective blocker of neuronal N-type voltage-sensitive calcium channels, with morphine on nociception in rats, Pain 84, 271–281 (2000)

    Article  CAS  Google Scholar 

  22. R.J. Lewis, K.J. Nielsen, D.J. Craik, M.L. Loughnan, D.A. Adams, I.A. Sharpe, T. Luchian, D.J. Adams, T. Bond, L. Thomas, A. Jones, J.L. Matheson, R. Drinkwater, P.R. Andrew, P.F. Alewood: Novel ω-conotoxins from Conus catus discriminate among neuronal calcium channel subtypes, J. Biol. Chem. 275, 35335–35344 (2000)

    Article  CAS  Google Scholar 

  23. D.A. Scott, C.E. Wright, J.A. Angus: Actions of intrathecal ω-conotoxins CVID, GVIA, MVIIA, and morphine in acute and neuropathic pain in the rat, Eur. J. Pharmacol. 451, 279–286 (2002)

    Article  CAS  Google Scholar 

  24. R.L. Rauck, M.S. Wallace, A.W. Burton, L. Kapural, J.M. North: Intrathecal ziconotide for neuropathic pain: A review, Pain Pract. 9, 327–337 (2009)

    Article  Google Scholar 

  25. K. Garber: Peptide leads new class of chronic pain drugs, Nat. Biotech. 23, 399 (2005)

    Article  CAS  Google Scholar 

  26. K.L. Rinehart, T.G. Holt, N.L. Fregeau, J.G. Stroh, P.A. Keifer, F. Sun, L.H. Li, D.G. Martin: Ecteinascidin-729, Ecteinascidin-743, Ecteinascidin745, Ecteinascidin-759a, Ecteinascidin-759b, and Ecteinascidin-770 potent antitumor agents from the Caribbean tunicate Ecteinascidiaturbinata, J. Org. Chem. 55, 4512–4515 (1990)

    Article  CAS  Google Scholar 

  27. A.E. Wright, D.A. Forleo, G.P. Gunawardana, S.P. Gunasekera, F.E. Koehn, O.J. McConnell: Antitumortetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidiaturbinata, J. Org. Chem. 55, 4508–4512 (1990)

    Article  CAS  Google Scholar 

  28. C. van Kesteren, M.M. de Vooght, L. López-Lázaro, R.A. Mathôt, J.H. Schellens, J.M. Jimeno, J.H. Beijnen: Yondelis (trabectedin, ET-743): The development of an anticancer agent of marine origin., Anticancer Drugs 14(7), 487–502 (2003)

    Article  CAS  Google Scholar 

  29. M. Zewail-Foote, V.S. Li, K.H. Bearss, M. Guzman, L.H. Hurley: The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UvrABC nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent, Chem. Biol. 8, 1033–1049 (2001)

    Article  CAS  Google Scholar 

  30. D.G. Soares, A.E. Escargueil, V. Poindessous, A. Sarasin, A. de Gramont, D. Bonatto, J.A. Pêgas, A.K. Larsen: Replication and homologous recombination repair regulate DNA-double strand break formation by antitumor alkyl for eiteinascidin 743, Proc. Natl. Acad. Sci. 10, 13062–13067 (2007)

    Article  CAS  Google Scholar 

  31. A.B. Herrero, C. Martin-Castellanos, E. Marco, F. Gago, S. Moreno: Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin, Cancer Res. 66, 8155–8162 (2006)

    Article  CAS  Google Scholar 

  32. C. Sessa, A. Perotti, C. Noberasco, F. De Braud, E. Gallerani, S. Cresta, M. Zucchetti, L. Viganò, A. Locatelli, J. Jimeno, J.W. Feilchenfeldt, M. D'Incalci, G. Capri, N. Ielmini, L. Gianni: Phase I clinical and pharmacokinetic study of trabectedin and doxorubicin in advanced soft tissue sarcoma and breast cancer, Eur. J. Cancer 45(7), 1153–1161 (2009)

    Article  CAS  Google Scholar 

  33. I. Bhatnagar, S.-K. Kim: Marine antitumor drugs: Status, shortfalls and strategies, Mar. Drugs 8, 2702–2720 (2010)

    Article  CAS  Google Scholar 

  34. D.J. Newman, G.M. Cragg: Marine natural products and related compounds in clinical and advanced pre-clinical trials, J. Nat. Prod. 67, 1216–1238 (2004)

    Article  CAS  Google Scholar 

  35. R. Montaser, H. Luesch: Marine natural products: A new wave of drugs?, Future Med, Chem. 3(12), 1475–1489 (2011)

    CAS  Google Scholar 

  36. D. Cosco, F. Rocco, M. Ceruti, M. Vono, M. Fresta, D. Paolino: Self-assembled squalenoyl-cytarabine nanostructures as a potent nanomedicine for treatment of leukemic diseases, Int. J. Nanomed. 7, 2535–2546 (2012)

    CAS  Google Scholar 

  37. J.M. Absalon, F.O. Smith: Treatment strategies for pediatric acute myeloidleukemia, Expert Opin, Pharmacother. 10(1), 57–79 (2009)

    CAS  Google Scholar 

  38. MARTINDALE: The Complete Drug Reference (database on the internet). Cytarabine. Thomson MICROMEDEX (2009). Available at: www.micromedex.com. Accessed December 1, 2009. Micromedex Health Care, Martindale - The Complete Drug Reference (www.micromedex.com)

  39. MARTINDALE: The Complete Drug Reference (database on the internet). Vidarabine. Thomson MICROMEDEX (2009). Available at: www.micromedex.com. Accessed December 1, 2009. Micromedex Health Care, Martindale - The Complete Drug Reference (www.micromedex.com)

  40. K.L. Rinehart, A.M. Lithgow-Bertelloni: Dehydrodidemnin B, World Patent Ser. WO9104985 A1 (1991)

    Google Scholar 

  41. E. Erba, M. Serafini, G. Gaipa, G. Tognon, S. Marchini, N. Celli, D. Rotilio, M. Broggini, J. Jimeno, G.T. Faircloth, A. Biondi, M. D'Incalci: Effect of Aplidin in acute lymphoblastic leukaemia cells. Br. J, Cancer 89(4), 763–773 (2003)

    Article  CAS  Google Scholar 

  42. C.S. Mitsiades, E.M. Ocio, A. Pandiella, P. Maiso, C. Gajate, M. Garayoa, D. Vilanova, J.C. Montero, N. Mitsiades, C.J. McMullan, N.C. Munshi, T. Hideshima, D. Chauhan, P. Aviles, G. Otero, G. Faircloth, M.V. Mateos, P.G. Richardson, F. Mollinedo, J.F. San-Miguel, K.C. Anderson: Aplidin, a marine organism–derived compound with potent antimyeloma activity in vitro and in vivo, Cancer Res. 68, 5216 (2008)

    Article  CAS  Google Scholar 

  43. M. Broggini, S.V. Marchini, E. Galliera, P. Borsotti, G. Taraboletti, E. Erba, M. Sironi, J. Jimeno, G.T. Faircloth, R. Giavazzi, M. D'Incalci: Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4, Leukemia 17(1), 52–59 (2003)

    Article  CAS  Google Scholar 

  44. A. Cuadrado, L. González, Y. Suárez, T. Martinez, A. Munoz: JNK activation is critical for Aplidin-induced apoptosis, Oncogene 27, 4673–4680 (2004)

    Article  CAS  Google Scholar 

  45. Y. Hirata, D. Uemura: Halichondrins-antitumor polyether macrolides from a marine sponge, Pure Appl. Chem. 58, 701–710 (1986)

    Article  CAS  Google Scholar 

  46. D. Uemura, K. Takahashi, T. Yamamoto, C. Katayama, J. Tanaka, Y. Okumura, Y. Hirata: Norhalichondrin A: An antitumor polyether macrolide from a marine sponge, J. Am. Chem. Soc. 107, 4796–4798 (1985)

    Article  CAS  Google Scholar 

  47. A. McBride, S.K. Butler: Eribulinmesylate: A novel halichondrin B analogue for the treatment of metastatic breast cancer, Am. J. Health Syst. Pharm. 69, 745–755 (2012)

    Article  CAS  Google Scholar 

  48. T. Okouneva, O. Azarenko, L. Wilson, B.A. Littlefield, M.A. Jordan: Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase, Mol. Cancer Ther. 7, 2003–2011 (2008)

    Article  CAS  Google Scholar 

  49. G. Kuznetsov, M.J. Towle, H. Cheng, T. Kawamura, K. TenDyke, D. Liu, Y. Kishi, M.J. Yu, B.A. Littlefield: Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389, Cancer Res. 64, 5760–5766 (2004)

    Article  CAS  Google Scholar 

  50. M.J. Yu, B.A. Littlefield, Y. Kishi: Discovery of E7389, a fully synthetic macrocyclic ketone analog of halichondrin B. In: Anticancer Agents from Natural Products, ed. by G.M. Cragg, D.G.I. Kingston, D.J. Newman (CRC, Taylor and Francis Group, Boca Raton, Fl 2005) pp. 241–265

    Google Scholar 

  51. J.B. Forero, M.K. Heiskala, N. Meneses, K. Chandrawansa, F. Fang, G. Shapiro, S.Z. Fields, S. Silberman, L. Vahdat: E7389, a novel anti-tubulin, in patients with refractory breast cancer, J. Clin. Oncol. 24(18), 653 (2006)

    Google Scholar 

  52. M.A. Becerro, G. Goetz, V.J. Paul, P.J. Scheuer: Chemical defenses of the sacoglossan mollusk Elysia rufescens and its host alga Bryopsis sp, J. Chem. Ecol. 27, 2287–2299 (2001)

    Article  CAS  Google Scholar 

  53. M. Garcia-Rocha, P. Bonay, J. Avila: The antitumoral compound Kahalalide F acts on celllysosomes, Cancer Lett. 99, 43–50 (1996)

    Article  CAS  Google Scholar 

  54. Y. Suarez, L. González, A. Cuadrado, M. Berciano, M. Lafarga, A. Muñoz: Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells, Mol. Cancer Ther. 2, 863–872 (2003)

    CAS  Google Scholar 

  55. M.L. Janmaat, J.A. Rodriguez, J. Jimeno, F.A.E. Kruyt, G. Giaccone: Kahalalide F induces necrosis-like cell death that involves depletion of ErbB3 and inhibition of Akt signaling, Mol. Pharmacol. 68, 502–510 (2005)

    CAS  Google Scholar 

  56. M.T. Hamann, P.J. Scheuer: F. Kahalalide: A bioactive depsipeptide from the Sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp, J. Am. Chem. Soc. 115, 5825–5826 (1993)

    Article  CAS  Google Scholar 

  57. C. Ciruelos, J.M. Trigo, B. Pardo, L. Paz-Ares, N. Estaun, C. Cuadra, M.J. Dominguez, A. Marin, A. Ruiz, J. Jimeno, M.A. Izquierdo: A phase I clinical and pharmacokinetic (PK) study with Kahalalide F (KF) in patients (pts) with advanced solid tumors (AST) with a continuous weekly (W) 1-hour iv infusion schedule, Eur. J. Cancer 38, S33 (2002)

    Google Scholar 

  58. G.R. Pettit: Progress in the discovery of biosynthetic anticancer drugs, J. Nat. Prod. 59, 812–821 (1996)

    Article  CAS  Google Scholar 

  59. G.R. Pettit, C.L. Herald, D.L. Doubek, D.L. Herald, E. Arnold, J. Clardy: Isolation and structure of bryostatin-1, J. Am. Chem. Soc. 104, 6846–6848 (1982)

    Article  CAS  Google Scholar 

  60. G.R. Pettit: Progress in the discovery of biosynthetic anticancer drugs, J. Nat. Prod. 59, 812–821 (1996)

    Article  CAS  Google Scholar 

  61. R.L. Berkow, L. Schlabach, R. Dodson, W.H. Benjamin, G.R. Pettit, P. Rustagi, A.S. Kraft: vivo administration of the anticancer agent bryostatin 1 activates platelets and neutrophils and modulates protein kinase C activity, Cancer Res. 53, 2810–2815 (1993)

    CAS  Google Scholar 

  62. Z.B. Ma Hu, W.L. Uphoff, C.C.M. Lanotte, H.G. Drexler: Modulation of gene-expression in the acute promyelocytic leukemia-cell line Nb4, Leukemia 7, 1817–1823 (1993)

    Google Scholar 

  63. R. Mutter, M. Wills: Chemistry and clinical biology of the bryostatins, Bioorg. Med. Chem. 8, 1841–1860 (2000)

    Article  CAS  Google Scholar 

  64. J.A. Ajani: Multi-center Phase II study of sequential paclitaxel and bryostatin-1 (NSC 339555) in patients with untreated, advanced gastric or gastroesophageal junction adenocarcinoma, Invest. New Drugs 24, 353–357 (2006)

    Article  CAS  Google Scholar 

  65. M.L. Varterasian, P.A. Pemberton, K. Hulburd, D.H. Rodriguez, A. Murgo, A.M. Al-Katib: Phase II study of bryostatin 1 in patients with relapsed multiple myeloma, Invest. New Drugs 19, 245–247 (2001)

    Article  CAS  Google Scholar 

  66. P.F. Hickman, G.J. Kemp, C.H. Thompson, A.J. Salisbury, K. Wade, A.L. Harris, G.K. Radda: Bryostatin 1, a novel antineoplastic agent and protein kinase C activator, induces human myalgia and muscle metabolic defects: A 31P magnetic resonance spectroscopic study, Br. J. Cancer 72(4), 998–1003 (1995)

    Article  CAS  Google Scholar 

  67. K.S. Moore, S. Wehrli, H. Roder, M. Rogers, J.N. Forrest Jr., D. McCrimmon, M. Zasloff: Squalamine: An aminosterol antiboitic from the shark, Proc. Natl. Acad. Sci. 90(4), 1354–1358 (1993)

    Article  CAS  Google Scholar 

  68. S.L. Wehrli, K.S. Moore, H. Roder, S. Durell, M. Zasloff: Structure of the novel steroidal antibiotic, Steroids 58(8), 370–378 (1993)

    Article  CAS  Google Scholar 

  69. T.A. Ciulla, M.H. Criswell, R.P. Danis, J.I. Williams, M.P. McLane, K.J. Holroyd: Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat, Retina 23(6), 808–814 (2003)

    Article  Google Scholar 

  70. V.A. Stonik: Marine natural products: A way to new drug, Acta Nat. 2, 15–25 (2009)

    Google Scholar 

  71. K.L. Rinehart Jr., J.B. Gloer, R.G. Hughes, H.E. Renis, J.P. McGovren, E.B. Swynenberg, D.A. Stringfellow, S.L. Kuentzel, L.H. Li: Didemnins: Antiviral and antitumor depsipeptides from a Caribbean tunicate, Science 212, 933–935 (1981)

    Article  CAS  Google Scholar 

  72. K. Rinehart: Antitumor compounds from tunicates, Med. Res. Rev. 1, 1–27 (2003)

    Google Scholar 

  73. R. Talpir, Y. Benayahu, Y. Kashman, L. Pannell, M. Schleyer: Hemiasterlin and geodiamolide TA: Two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick), Tetrahedron Lett. 35, 4453–4456 (1994)

    Article  CAS  Google Scholar 

  74. G. Kuznetsov, K. TenDyke, M.J. Towle, H. Cheng, J. Liu, J.P. Marsh, S.E. Schiller, M.R. Spyvee, H. Yang, B.M. Seletsky, C.J. Shaffe, V. Marceau, Y. Yao, E.M. Suh, S. Campagna, F.G. Fang, J.J. Kowalczyk, B.A. Littlefield: Tubulin-based antimitotic mechanism of E7974, a novel analogue of the marine sponge natural product the miasterlin, Mol. Cancer Ther. 8, 2852–2860 (2009)

    Article  CAS  Google Scholar 

  75. N. Zojwalla, C.H. Takimoto, A.G. Lucarelli, R. Clark, A.C. Mita, M.M. Mita, O. Romero, E.L. Schuck, I. Krivelevich, C.J. Sweeney: A phase I trial of E7974 administered on days 1, 8, and 15 of a 28-day cycle in patients with solid malignancies, J. Clin. Oncol. 25(20), 2543 (2007)

    Google Scholar 

  76. M.V. De Souza: ($+$)-discodermolide: A marine natural product against cancer, Sci. World J. 4, 415–436 (2004)

    Article  CAS  Google Scholar 

  77. R.E. Longley, D. Caddigan, D. Harmody, M. Gunasekera, S.P. Gunasekera: Discodermolide a new, marine-derived immunosuppressive compound. I. In vitro studies, Transplantation 52, 650–656 (1991)

    Article  CAS  Google Scholar 

  78. R.E. Longley, D. Caddigan, D. Harmody, M. Gunasekera, S.P. Gunasekera: Discodermolide a new, marine-derived immunosuppressive compound. II. In vivo studies, Transplantation 52, 656–661 (1991)

    Article  CAS  Google Scholar 

  79. R.E. Longley, S.P. Gunasekera, D. Faherty, J. McLane, F. Dumont: Immuno suppression by discodermolide, Ann. NY Acad. Sci. 696, 94–107 (1993)

    Article  CAS  Google Scholar 

  80. J.G. Chen, S.B. Horwitz: Differential mitotic responses to microtubule stabilizing and destabilizing drugs, Cancer Res. 62, 1935–1938 (2002)

    CAS  Google Scholar 

  81. L.E. Bröke, C. Huisman, C.G. Ferreira, J.A. Rodriguez, F.A. Kruyt, G. Giaccone: Late activation of apoptotic pathways plays a negligible role in mediating the cytotoxic effects of discodermolide and epothilone B in non-small cell lung cancer cells, Cancer Res. 62, 4081–4088 (2002)

    Google Scholar 

  82. S. Honore, K. Kamath, D. Braguer, L. Wilson, C. Briand, M.A. Jordan: Suppression of microtubule dynamics by discodermolide by a novel mechanism is associated with mitotic arrest and inhibition of tumor cell proliferation, Mol. Cancer Ther. 2, 1303–1311 (2003)

    CAS  Google Scholar 

  83. G.R. Pettit: The dolastatins, Fortschr. Chem. Org. Naturst. 70, 1–79 (1997)

    CAS  Google Scholar 

  84. D.J. Triggle: Drug discovery and delivery in the 21st century, Med. Princ. Pract. 16, 1–14 (2007)

    Article  Google Scholar 

  85. G.R. Pettit, Y. Kamano, C.L. Herald, A.A. Tuinman, F.E. Boettner, K. Haruhisa, J.M. Schmidt, L. Baczynsky, B. Kenneth, T.R. Bontems: The isolation and structure of a remarkable marine animal antineoplastic constituent Dolastatin 10, J. Am. Chem. Soc. 109, 6883–6885 (1987)

    Article  CAS  Google Scholar 

  86. D.J. Newman, G.M. Cragg: Marine natural products and related compounds in clinical and advanced preclinical trials, J. Nat. Prod. 67, 1216–1238 (2004)

    Article  CAS  Google Scholar 

  87. M. Kobayashi, T. Natsume, S. Tamaoki, J. Watanabe, H. Asano, T. Mikami, K. Miyasaka, K. Miyazaki, M. Gondo, K. Sakakibara, S. Tsukagoshi: Antitumor activity of TZT-1027, a novel dolastatin 10 derivative, Jpn. J. Cancer Res. 88, 316–327 (1997)

    Article  CAS  Google Scholar 

  88. P. Schöffski, B. Thate, G. Beutel, O. Bolte, O.D. Hofmann, M. Ganser, A. Jenner, P. Cheverton, J. Wanders, T. Oguma, R. Atsumi, M. Satomi: Phase I and pharmaco kinetic study of TZT-1027, a novel synthetic dolastatin 10 derivative, administered as a 1-hour intravenous infusion every 3 weeks in patients with advanced refractory cancer, Ann. Oncol. 15, 671–679 (2004)

    Article  Google Scholar 

  89. J. Liang, R.E. Moore, E.D. Moher, J.E. Munroe, R.S. Al-awar, D.A. Hay, D.L. Varie, T.Y. Zhang, J.A. Aikins, M.J. Martinelli, C. Shih, J.E. Ray, L.L. Gibson, V. Vasudevan, L. Polin, K. White, J. Kushner, C. Simpson, S. Pugh, T.H. Corbett: Cryptophycins-309, 249 and other crypto phycin analogs: Preclinical efficacy studies with mouse and human tumors, Investig. New Drugs 23, 213–224 (2005)

    Article  CAS  Google Scholar 

  90. W. Fenical, P.R. Jensen, M.A. Palladino, K.S. Lam, G.K. Lloyd, B.C. Potts: Discovery and development of the anticancer agent salinosporamide A (NPI-0052), Bioorg. Med. Chem. 17, 2175–2180 (2009)

    Article  CAS  Google Scholar 

  91. M. Groll, R. Huber, B.C.M. Potts: Crystal structures of salinosporamide A (NPI0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring opening and a mechanism for irreversible binding, J. Am. Chem. Soc. 128, 5136–5141 (2006)

    Article  CAS  Google Scholar 

  92. D. Chauhan, T. Hideshima, K.C. Anderson: A novel proteasome inhibitorNPI-0052asananticancer therapy, Br. J. Cancer 95, 961–965 (2006)

    Article  CAS  Google Scholar 

  93. K.S. Lam: From natural product to clinical trials: NPI-0052 (salinosporamide A), a marine actinomycete derived anticancer agent. In: Natural Products Chemistry for Drug Discovery, ed. by A.D. Buss, M.S. Butler (Royal Society of Chemistry, Cambridge 2010) pp. 355–373

    Google Scholar 

  94. P. Proksch, R.A. Edrada, E. Rainer: Drugs from the sea opportunities and obstacles, Mar. Drugs 1, 5–17 (2003)

    Article  CAS  Google Scholar 

  95. J.B. Hart, R.E. Lill, S.J.H. Hickford, J.W. Blunt, M.H.G. Munro: The halichondrins: Chemistry, biology, supply and delivery. In: Drugs from the Sea, ed. by N. Fusetani (Karger, Basel 2000) pp. 134–153

    Chapter  Google Scholar 

  96. R. Montaser, H. Leusch: Marine natural products: A new wave of drugs?, Future Med, Chem. 3(12), 1475–1489 (2011)

    CAS  Google Scholar 

  97. D. Mendola: Aquacultural production of bryostatin 1 and ecteinascidin 743. In: Drugs from the Sea, ed. by N. Fusetani (Karger, Basel 2000) pp. 120–133

    Chapter  Google Scholar 

  98. S. Sudek, N.B. Lopanik, L.E. Waggoner, M. Hildebrand, C. Anderson, H. Liu, A. Patel, D.H. Sherman, M.G. Haygood: Identification of the putative bryostatin polyketide synthase gene cluster from Candidatus End obugula sertula, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina, J. Nat. Prod. 70(1), 67–74 (2007)

    Article  CAS  Google Scholar 

  99. C.V. Minh, P.V. Kiem, N.H. Dang: Marine natural products and their potential application in the future, AJSTD 22(4), 297–311 (2005)

    Google Scholar 

  100. J. Kennedy, B. Flemer, S.A. Jackson, D.P.H. Lejon, J.P. Morrissey Fergal, O'Gara, A.D.W. Dobson: Marine Metagenomics: New tools for the study and exploitation of marine microbial metabolism, Mar. Drugs 8, 608–628 (2010)

    Article  CAS  Google Scholar 

  101. X.-Q. Zhao: Genome based studies of marine microorganisms to maximize the diversity of natural products discovery for medical treatments, Evidence-Based Complementary and Alternative Medicine 2011, 384572 (2011)

    Google Scholar 

  102. Z.-Q. Xiong, J.-F. Wang, Y.-Y. Hao, Y. Wang: Recent advances in the discovery and development of marine microbial natural products, Mar. Drugs 11, 700–717 (2013)

    Article  CAS  Google Scholar 

  103. A.L. Lane, B.S. Moore: A sea of biosynthesis: Marine natural products meet the molecular age, Nat. Prod. Rep. 28, 411–428 (2011)

    Article  CAS  Google Scholar 

  104. S.S. Ebada, W.H. Lin, P. Proksch: Bioactive sesterterpenes and triterpenes from marine sponges: Occurrence and pharmacological significance, Mar. Drugs 8, 313–346 (2010)

    Article  CAS  Google Scholar 

  105. M. Rhomer, M. Knani, P. Simonin, B. Sutter, H. Sahm: Isoprenoid biosynthesis in bacteria: A novel pathway for the early steps leading to isopenthyl-diphosphate, Biochem. J. 295, 517–524 (1993)

    Article  Google Scholar 

  106. W. Capa-Robles, J. Paniagua-Michel, J.O. Soto: The biosynthesis and accumulation of beta-carotene in Dunaliella salina proceed via the glyceraldehyde 3-hosphate/pyruvate pathway, Nat. Prod. Res. 23(11), 1021–1028 (2009)

    Article  CAS  Google Scholar 

  107. J. Paniagua-Michel, W. Capa-Robles, J. Olmos-Soto, L.E. Gutierrez-Millan: The caroteno genesis pathway via the isoprenoid-beta-carotene interference approach in a new strain of Dunaliella salina isolated from Baja California Mexico, Mar. Drugs 7(1), 45–56 (2009)

    Article  CAS  Google Scholar 

  108. T.-S. Vo, S.-K. Kim: Fucoidan as a natural bioactive ingredient for functional foods, Funct. Foods 6(1), 16–27 (2013)

    Article  CAS  Google Scholar 

  109. J.C. Espín, M.T. García-Conesa, F.A. Tomás-Barberán: Nutraceuticals: facts and fiction, Phytochemistry 68(22/24), 2986–3008 (2007)

    Article  CAS  Google Scholar 

  110. S.J.L. Ochoa, J. Olmos-Soto: The functional property of Bacillus for shrimp feeds, Food Microbiol. 23, 519–525 (2006)

    Article  CAS  Google Scholar 

  111. J. Olmos, L. Ochoa, J. Paniagua-Michel, R. Contreras: Functional feed assessment on litopenaeus vannamei using ${\mathrm{100}}\%$ fish meal replacement by soybean meal, high levels of complex carbohydrates and bacillus probiotic strains, Mar. Drugs 9(6), 1119–1132 (2011)

    Article  CAS  Google Scholar 

  112. M.A. Linan, J. Paniagua-Michel, P.M. Hopkins: Bioactive roles of carotenoids and retinoids in crustaceans, Aquacult. Nutr. 8(4), 299–309 (2002)

    Article  Google Scholar 

  113. J. Paniagua-Michel, M.A. Linan: Carotenoids, Retinoids modulate ovarian development in Litopenaeus vannamei, Global Aquacult. 5(2), 34–36 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paniagua-Michel, J.d.J., Olmos Soto, J., Morales-Guerrero, E. (2015). Drugs and Leads from the Ocean Through Biotechnology. In: Kim, SK. (eds) Springer Handbook of Marine Biotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-53971-8_29

Download citation

Publish with us

Policies and ethics