Skip to main content

New Light on the Mind-Brain Problem: How Mental Events Could Influence Neural Events

  • Chapter
How the SELF Controls Its BRAIN
  • 266 Accesses

Abstract

It has long been recognized that, if non-material mental events, such as the intention to carry out an action, are to have an effective action on neural events in the brain, it has to be at the most subtle and plastic level of these events. Attention has to be focused on the biological units of the brain, the neurons or nerve cells, and on the manner of their communication at specialized sites of close contact, the synapses. An introduction to conventional synaptic theory leads on to an account of the manner of operation of the ultimate synaptic units. These units are the synaptic boutons that, when excited by an all-or-nothing nerve impulse, deliver the total contents of a single synaptic vesicle, not regularly, but probabilistically. This quantal emission of synaptic transmitter molecules (about 5000 to 10000) is the ultimate functional unit of the transmission process from one neuron to another. This refined physiological analysis leads on to an account of the ultrastructure of the synapse, which gives clues as to the manner of its unitary probabilistic operation. The essential feature is that the effective structure of each synapse is a paracrystalline presynaptic vesicular grid, which acts probabilistically in quantal release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapters 4 and 5

  • Akert, K., Peper, K., and Sandri, C. (1975) Structural organization of motor end plate and central synapses, in Cholinergic Mechanisms, edited by E. G. Waser (Raven Press, New York), pp. 43–57.

    Google Scholar 

  • Brinkman, C., and Porter, R. (1979) Supplementary motor area in the monkey: activity of neurons during performance of a learned motor task, J. Neurophysiol 42, 681–709.

    Google Scholar 

  • Brinkman, C., and Porter, R. (1983) Supplementary motor area and premotor area of the monkey cerebral cortex: functional organization and activities of single neurons during performance of a learned movement, Adv. Neurol 39, 393–420.

    Google Scholar 

  • Brown, A. G. (1981) Organization in the Spinal Cord: The Anatomy and Physiology of Identified Neurones (Springer, Berlin, Heidelberg).

    Google Scholar 

  • Burke, R. E., Walmsley, B., and Hodgson, J. A. (1979) HRP anatomy of group Ia afferent contacts on alpha motoneurones, Brain Res. 160, 347–352.

    Article  Google Scholar 

  • Creutzfeldt, O. D. (1979) Neurophysiological mechanisms and consciousness, in Brain and Mind (Ciba Foundation Series 69) (Elsevier-North Holland, Amsterdam), pp. 217–233.

    Google Scholar 

  • Deecke, L., and Kornhuber, H. H. (1978) An electrical sign of participation of the mesial’ supplementary’ motor cortex in human voluntary finger movement, Brain Res. 159, 473–476.

    Article  Google Scholar 

  • DeLorenzo, R. J. (1981) The calmodulin hypothesis of neurotransmission, Cell. Calcium 2, 365–385.

    Article  Google Scholar 

  • Eccles, J. C. (1980) The Human Psyche (Springer, Berlin, Heidelberg).

    Google Scholar 

  • Eccles, J. C. (1982a) The initiation of voluntary movements by the supplementary motor area, Arch. Psychiatr. Nervenkr. 231, 423–441.

    Article  Google Scholar 

  • Eccles, J. C. (1982b) How the self acts on the brain, Psychoneuroendocrinol. 7, 271–283.

    Article  Google Scholar 

  • Eccles, J. C. (1986) Learning in the motor system, Prog. Brain Res. 64, 3–18.

    Article  Google Scholar 

  • Eccles, J. C., Eccles R. M., and Lundberg, A. (1957) Synaptic actions on motoneurones in relation to the two components of the group I muscle afferent volley, J. Physiol, London 136, 527–546.

    Google Scholar 

  • Edelman, G. M. (1978) Group selection and phasic reentrant signalling: a theory of higher brain function, in The Mindful Brain (MIT Press, Cambridge MA), pp. 51–100.

    Google Scholar 

  • Feigl, H. (1967) The ‘Mental’ and the ‘Physical’ (University of Minnesota Press, Minneapolis MN).

    Google Scholar 

  • Gray, E. G. (1982) Rehabilitating the dendritic spine, Trends Neurosci. 5, 5–6.

    Article  Google Scholar 

  • Hassler, R. (1978) Interaction of reticular activating system for vigilance and the truncothalamic and pallidal systems for directing awareness and attention under striatal control, in Cerebral Correlates of Conscious Experience, edited by P. A. Buser and A. Rougeul-Buser (Elsevier-North Holland, Amsterdam), pp. 110–129.

    Google Scholar 

  • Hirst, G. D. S., Redman, S. J., and Wong, K. (1981) Post-tetanic potentiation and facilitation of synaptic potentials evoked in cat spinal motoneurones, J. Physiol, London 321, 97–109.

    Google Scholar 

  • Hubbard, J. I. (1970) Mechanism of transmitter release, Prog. Biophys. Molec. Biol. 21, 33–124.

    Article  Google Scholar 

  • Ingvar, D. H. (1985) ‘Memory of the future.’ An essay on the temporal organization of conscious awareness, Hum. Neurobiol 4, 127–136.

    Google Scholar 

  • Jack, J. J. B., Redman, S. J., and Wong, K. (1981a) The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afférents, J. Physiol, London 321, 65–96.

    Google Scholar 

  • Jack, J. J. B., Redman, S. J., and Wong, K. (1981b) Modifications to synaptic transmission at group Ia synapses on cat spinal motoneurones by 4-aminopyridine, J. Physiol., London 321, 111–126.

    Google Scholar 

  • Katz, B., and Miledi, R. (1965) The measurement of synaptic delay and time course of acetylcholine release at neuromuscular junction, Proc. Roy. Soc. London B 161, 483–495.

    Article  ADS  Google Scholar 

  • Kelly, R. B., Deutsch, J. W., Carlson, S. S., and Wagner, J. A. (1979) Biochemistry of neurotransmitter release, A. Rev. Neurosci. 2, 399–446.

    Article  Google Scholar 

  • Korn, H., Mallet, A., Triller, A., and Faber, D. S. (1982) Transmission at a central inhibitory synapse. II. Quantal description of release, with a physical correlate for binomial n, J. Neurophysiol. 48, 679–707.

    Google Scholar 

  • Korn, H., and Faber, D. S. (1985) Regulation and significance of probabilistic release mechanisms at central synapses, in New Insights into Synaptic Function, edited by G. M. Edelman, W E. Gall, and W. M. Cowan (Neurosciences Research Foundation/ Wiley, New York), pp. 57–108.

    Google Scholar 

  • Margenau, H. (1984) The Miracle of Existence (Ox Bow, Woodbridge, CT).

    Google Scholar 

  • Mendell, L. M., and Henneman, E. (1971) Terminals of single Ia fibers: location, density and distribution within a pool of 300 homogeneous motoneurons, J. Neurophysiol. 34, 171–187.

    Google Scholar 

  • Mountcastle, V. B. (1978) An organizing principle for cerebral function: the unit module and the distributed system, in The Mindful Brain (MIT Press, Cambridge MA), pp. 7–50.

    Google Scholar 

  • Penfield, W., and Robert, L. (1959) Speech and Brain Mechanisms (Princeton University Press, Princeton NJ).

    Google Scholar 

  • Popper, K. R., and Eccles, J. C. (1977) The Self and Its Brain (Springer, Berlin, Heidelberg).

    Book  Google Scholar 

  • Redman, S. J. (1980) Mechanisms of transmitting release at Ia afferent terminations, Adv. Physiolo. Sci. 1, 93–100. Also in Regulatory Functions of the CNS. Principles of Motion and Organization, edited by J. Szentágothai, M. Palkovits, and J. Hamori (Pergamon, Oxford)

    Google Scholar 

  • Redman, S., and Walmsley, B. (1983a) The time course of synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses, J. Neurophysiol. 343, 117–133.

    Google Scholar 

  • Redman, S., and Walmsley, B. (1983b) Amplitude fluctuations in synaptic potentials evoked in cat spinal motoneurones at identified group Ia synapses, J. Neurophysiol. 343, 135–145.

    Google Scholar 

  • Roland, P. E. (1981) Somatotopical tuning of postcentral gyrus during focal attention in man. A regional cerebral blood flow study, J. Neurophysiol. 46, 744–754.

    Google Scholar 

  • Roland, P. E., and Friberg, L. (1985) Localization in cortical areas activated by thinking, J. Neurophysiol. 53, 1219–1243.

    Google Scholar 

  • Roland, P. E., Larsen, B., Lassen, N. A., and Skinhøj, E. (1989) Supplementary motor area and other cortical areas in organization of voluntary movements in man, J. Neurophysiol. 43, 118–136.

    Google Scholar 

  • Sperry, R. W. (1976) Mental phenomena as causal determinants in brain function, in Consciousness of the Brain, edited by G. G. Globus, G. Maxwell, and I. Savodnik (Plenum, New York), pp. 163–177.

    Chapter  Google Scholar 

  • Szentágothai, J. (1978a) The neuron network of the cerebral cortex. A functional interpretation, Proc. Roy. Soc. London B 201, 219–248.

    Article  ADS  Google Scholar 

  • Szentágothai, J. (1978b) The local neuronal apparatus of the cerebral cortex, in Cerebral Correlates of Conscious Experience, edited by P. Buser and A. Rongeul-Buser (Elsevier, Amsterdam), pp. 131–138.

    Google Scholar 

  • Szentágothai, J. (1983) The modular architectonic principle of neural centers, Rev. Physiol. Biochem. Pharmacol. 98, 11–61.

    Article  Google Scholar 

  • Tanji, J., and Kurata, K. (1982) Comparison of movement-related activity in two cortical motor areas of primates, J. Neurophysiol. 48, 633–653.

    Google Scholar 

  • Triller, A., and Korn, H. (1982) Transmission at a central inhibitory synapse. III. Ultrastructure of physiologically identified and stained terminals, J. Neurophysiol. 48, 708–736.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eccles, J.C. (1994). New Light on the Mind-Brain Problem: How Mental Events Could Influence Neural Events. In: How the SELF Controls Its BRAIN. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-49224-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-49224-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-49226-6

  • Online ISBN: 978-3-642-49224-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics