Duality theory for convex/quasiconvex functions and its application to optimization

  • J. G. B. Frenk
  • D. M. L. Dias
  • J. Gromicho
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 405)

Abstract

In this paper an intuitive and geometric approach is presented explaining the basic ideas of convex/quasiconvex analysis and its relation to duality theory. As such, this paper does not contain new results but serves as a hopefully easy introduction to the most important results in duality theory for convex/quasiconvex functions on locally convex real topological vector spaces. Moreover, its connection to optimization is also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin. Optimal Control. Consultants Bureau, New York, 1987.Google Scholar
  2. 2.
    Z. W. Birnbaum and W. Orlicz. Über die veralgemeinerung des begrieffes der zueinander konjugierten potenzen. Studia Math., 3: 1–67, 1931.Google Scholar
  3. 3.
    G. Choquet. Lectures on Analysis (representation theory), volume 2. W. A. Benjamin, London, 1969.Google Scholar
  4. 4.
    J. P. Crouzeix. Contributions à l’étude des fonctions quasiconvexes. PhD thesis, Université de Clermont-Ferrand II, 1977.Google Scholar
  5. 5.
    J. P. Crouzeix. Continuity and differentiability properties of quasiconvex functions on 1Rn. In S. Schaible and W. T. Ziemba, editors, Generalized Concavity in Optimization and Economics, pages 109–130, New York, 1981. Academic Press.Google Scholar
  6. 6.
    J. P. Crouzeix. A duality framework in quasiconvex programming. In S. Schaible and W. T. Ziemba, editors, Generalized Concavity in Optimization and Economics, pages 207–225, New York, 1981. Academic Press.Google Scholar
  7. 7.
    M. Dyer. Calculating surrogate constraints. Mathematical Programming, 19: 255–278, 1980.CrossRefGoogle Scholar
  8. 8.
    W. Fenchel. On conjugate convex functions. Canad. J. Math., 1: 73–77, 1949.CrossRefGoogle Scholar
  9. 9.
    W. Fenchel. A remark on convex sets and polarity. In Communication seminar on mathematics, University of Lund supplementary volume, pages 22–89, Lund, 1952. University of Lund.Google Scholar
  10. 10.
    H. J. Greenberg and W. P. Pierskalla. Quasi-conjugate functions and surrogate duality. Cahiers du Centre d’etudes de Recherche Operationnelle, 15: 437–448, 1973.Google Scholar
  11. 11.
    S. Mandelbrojt. Sur les functions convexes. C. R. Acad. Sc., 209: 977–978, 1939.Google Scholar
  12. 12.
    J. E. Martinez-Legaz. Exact quasiconvex conjugation. Zeitschrift für Operations Research, 27: 257–266, 1983.CrossRefGoogle Scholar
  13. 13.
    J. E. Martinez-Legaz. Generalized conjugation and related topics. In A. Cambini, E. Castagnoli, L. Martein, P. Mazzoleni, and S. Schaible, editors, Generalized convexity and fractional programming with economic applications, volume 345, pages 168–197, Berlin, 1990. Springer-Verlag.CrossRefGoogle Scholar
  14. 14.
    J. J. Moreau. Inf convolution, sous-additivité, convexité des fonctions numérique. Journal de Mathématiques Pures et Appliquées, 49: 105–154, 1970.Google Scholar
  15. 15.
    U. Passy and E.Z. Prisman. Conjugacy in quasiconvex programming. Mathematical Programming, 30: 121–146, 1984.CrossRefGoogle Scholar
  16. 16.
    U. Passy and E.Z. Prisman. A convex-like duality scheme for quasiconvex programs. Mathematical Programming, 32: 278–300, 1985.CrossRefGoogle Scholar
  17. 17.
    U. Passy and E.Z. Prisman. A duality approach to minimax results for quasi-saddle functions in finite dimensions. Mathematical Programming, 55: 81–98, 1992.CrossRefGoogle Scholar
  18. 18.
    J. P. Penot and M. Volle. On quasiconvex duality. Mathematics of Operations Research, 15: 597–625, 1990.CrossRefGoogle Scholar
  19. 19.
    R. T. Rockafellar. Convex analysis. Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  20. 20.
    R. T. Rockafellar. Conjugate Duality and Optimization. SIAM, Philadelphia, 1974.CrossRefGoogle Scholar
  21. 21.
    W. Rudin. Functional Analysis. McGraw-Hill, New Delhi, 1973.Google Scholar
  22. 22.
    I. Singer. Conjugation operators. In G. Hammer and D. Pallaschke, editors, Selected topics in Operations Research and Mathematical Economics, pages 80–97, Berlin, 1984. Springer-Verlag.CrossRefGoogle Scholar
  23. 23.
    I. Singer. Generalized convexity, functional hulls and applications to conjugate duality in optimization. In G. Hammer and D. Pallaschke, editors, Selected topics in Operations Research and Mathematical Economics, pages 49–79, Berlin, 1984. Springer-Verlag.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. G. B. Frenk
    • 1
  • D. M. L. Dias
    • 1
  • J. Gromicho
    • 1
  1. 1.Econometric InstituteErasmus UniversityRotterdamThe Netherlands

Personalised recommendations