Skip to main content

Adenosine, Cyclic AMP and Nerve Conduction

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

The actions of adenosine, adenosine-stable analogues, adenine nucleotides, dibutyril cyclic AMP, methylxanthines, papaverine, and forskolin were studied on desheathed frog sciatic nerves partially inhibited with tetrodotoxin (TTX). All substances, but not the adenine nucleotides, which antagonized the inhibitory action of TTX on compound action potentials, decreased the amplitude of compound action potentials partially inhibited by TTX. The finding that substances which can increase cyclic AMP accumulation in nerve axons mimic the inhibitory action of adenosine on nerve conduction suggests that the effect of adenosine is positively coupled to the adenylate cyclase/cyclic AMP system. The interpretation that the inhibitory effect of adenosine on nerve conduction can result from a reduction in the sodium entry during the action potential is supported by the finding that the most potent adenosine analogue that enhances the TTX-induced axonal blockade, N6-cyclohexyladenosine (CHA), decreases the uptake of 22Na by rat brain synaptosomes stimulated by veratridine. Whether the present results might help to explain the anticonvulsant properties of adenosine is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barraco RA, Coffin VL, Altman HJ, Phillis JW (1983) Central effects of adenosine analogs on locomotor activity in mice and antagonism of caffeine. Brain Res 272:392ā€“395

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Barraco RA, Swanson TH, Phillis JW, Berman RF (1984) Anticonvulsant effects of adenosine analogues on amygdaloid-kindled seizures in rats. Neurosci Lett 46:317ā€“322

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Carvalho CAM, Carvalho AP (1979) Effect of temperature and ionophores on the permeability of synaptosomes. J Neurochem 33:309ā€“317

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Costa MRC, Catterall WA (1984) Cyclic AMP-dependent phosphorylation of the Ī± subunit of the sodium channel in synaptic nerve ending particles. J Biol Chem 259:8210ā€“8218

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. Costa MRC, Casnellie JE, Catterall WA (1982) Selective phosphorylation of the Ī± subunit of the sodium channel by cAMP-dependent protein kinase. J Biol Chem 257:7918ā€“7921

    PubMedĀ  CASĀ  Google ScholarĀ 

  6. Daly JW (1977) Cyclic nucleotides in the nervous system. Plenum, New York

    BookĀ  Google ScholarĀ 

  7. Daly JW (1983) Role of ATP and adenosine receptors in physiologic processes: summary and prospectus. In: Daly JW, Kuroda Y, Phillis JW, Shimizu H, Ui M (eds) Physiology and pharmacology of adenosine derivatives. Raven, New York, pp 275ā€“290

    Google ScholarĀ 

  8. Daly JW (1984) Forskolin, adenylate cyclase and cell physiology: an overview. In: Greengard P, Robinson GA, Paoletti R, Nicosia S (eds) Advances in cyclic nucleotide and protein phosphorylation research, vol 17. Raven, New York, pp 81ā€“89

    Google ScholarĀ 

  9. Dragunow M (1986) Adenosine: the brainā€™s natural anticonvulsant? TIPS 7:128ā€“130

    CASĀ  Google ScholarĀ 

  10. Ebstein RP, Daly JW (1982) Release of norepinephrine and dopamine from brain vesicular preparations: effects of adenosine analogues. Cell Mol Neurobiol 2:193ā€“204

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Ginsborg BL, Hirst GDS (1972) The effect of adenosine on the release of the transmitter from the phrenic nerve of the rat. J Physiol (Lond) 224:629ā€“645

    PubMedĀ  CASĀ  Google ScholarĀ 

  12. Hayashi E, Maeda T, Shinozuka K (1982) Sites of actions of adenosine in intrinsic cholinergic nerves of ileal longitudinal muscle from guinea pig. Eur J Pharmacol 84:99ā€“102

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500ā€“544

    PubMedĀ  CASĀ  Google ScholarĀ 

  14. Horn JP, McAfee DA (1977) Modulation of cyclic nucleotide levels in peripheral nerve without effect on resting or compound action potentials. J Physiol (Lond) 269:753ā€“766

    PubMedĀ  CASĀ  Google ScholarĀ 

  15. Kilmer SL, Carlsen RC (1985) Forskolin activation of adenylate cyclase in vivo stimulates nerve regeneration. Nature 307:455ā€“457

    ArticleĀ  Google ScholarĀ 

  16. Kukovetz WR, Pƶch G (1970) Inhibition of cyclic-3ā€™,5ā€™-nucleotide-phosphodiesterase as a possible mode of action of papaverine and similarly acting drugs. Naunyn Schmiedebergs Arch Pharmacol 267:189ā€“194

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Lee KS, Schubert P, Heinemann U (1984) The anticonvulsive action of adenosine: a postsy-naptic, dendritic action by a possible endogenous anticonvulsant. Brain Res 321:160ā€“164

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Maire JC, Medilanski J, Straub RW (1982) Uptake of adenosine and release of adenine derivatives in mammalian non-myelinated nerve fibres at rest and during activity. J Physiol (Lond) 323:589ā€“602

    PubMedĀ  CASĀ  Google ScholarĀ 

  19. Maire JC, Medilanski J, Straub RW (1984) Release of adenosine, inosine and hypoxanthine from rabbit non-myelinated nerve fibres at rest and during activity. J Physiol (Lond) 357:67ā€“77

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Narahashi T, Moore JW, Scott WR (1964) Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J Gen Physiol 47:965ā€“974

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Oliveira PC, SebastiĆ£o AM, Ribeiro JA (1986) Adenosina e captaĆ§Ć£o de 22Na por sinaptosomas estimulados pela veratridina. VIII ReuniĆ£o da Sociedade Portuguesa de Fisiologia, Abs. 7

    Google ScholarĀ 

  22. Quintana J (1985) Adenosine and related nucleotides alter calcium uptake in depolarized synaptosomes of torpedo electric organ. J Neural Transm 64:271ā€“284

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Ribeiro JA, Dominguez ML (1978) Mechanisms of depression of neuromuscular transmission by ATP and adenosine. J Physiol (Paris) 74:491ā€“496

    CASĀ  Google ScholarĀ 

  24. Ribeiro JA, SebastiĆ£o AM (1984a) Antagonism of tetrodotoxin-and procaine-induced axonal blockade by adenine nucleotides in the frog sciatic nerve. Br J Pharmacol 81:277ā€“282

    PubMedĀ  CASĀ  Google ScholarĀ 

  25. Ribeiro JA, SebastiĆ£o AM (1984b) Enhancement of tetrodotoxin-induced axonal blockade by adenosine, adenosine analogues, dibutyryl cyclic AMP and methylxanthines in the frog sciatic nerve. Br J Pharmacol 83:485ā€“492

    PubMedĀ  CASĀ  Google ScholarĀ 

  26. Ribeiro JA, SebastiĆ£o AM (1985a) On the type of receptor involved in the inhibitory action of adenosine at the neuromuscular junction. Br J Pharmacol 84:911ā€“918

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Ribeiro JA, SebastiĆ£o AM# (1985b) Inhibitory effects of forskolin and papaverine on nerve conduction partially blocked by tetrodotoxin in the frog sciatic nerve. Br J Pharmacol 85:309ā€“313

    PubMedĀ  CASĀ  Google ScholarĀ 

  28. Ribeiro JA, SebastiĆ£o AM (1986 a) Endogenous adenosine modulates transmission at the neuromuscular junction. Br J Pharmacol 87:185P

    Google ScholarĀ 

  29. Ribeiro JA, SebastiĆ£o AM (1986b) Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog Neurobiol 26:179ā€“209

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Ribeiro JA, Walker J (1975) The effects of adenosine triphosphate and adenosine diphosphate on transmission at the rat and frog neuromuscular junctions. Br J Pharmacol 54:213ā€“218

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Ribeiro JA, SĆ”-Almeida AM, Namorado JM (1979) Adenosine and adenosine triphosphate decrease 45Ca uptake by synaptosomes stimulated by potassium. Biochem Pharmacol 28:1297ā€“1300

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  32. Roch P, Salamin A (1976) Adenosine promoted accumulation of adenosine 3ā€™,5ā€™-monophosphate in rabbit vagus nerve. Experientia 32:1419ā€“1421

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Sano M, Seto-Ohshima A, Mizutani A (1984) Forskolin supresses seizures induced by pentyle-netetrazol in mice. Experientia 40:1270ā€“1271

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Schoffeniels E, Dandrifosse G (1980) Protein phosphorylation and sodium conductance in nerve membrane. Proc Natl Acad Sci USA 77:812ā€“816

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Schreurs J, Seelig T, Schulman H (1986) Ɵ 2-Adrenergic receptors on peripheral nerves. J Neuro-chem 46:294ā€“296

    CASĀ  Google ScholarĀ 

  36. Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci 78:3363ā€“3367

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  37. SebastiĆ£o AM (1986) Inhibition of 5ā€²-nucleotidase prevents the inhibitory effect of ATP on end-plate potentials recorded from muscle fibres of the frog sartorius. PflĆ¼gers Arch 407 [Suppl 1]:S46

    ArticleĀ  Google ScholarĀ 

  38. SebastiĆ£o AM, Reibeiro JA (1985) Enhancement of transmission at the frog neuromuscular junction by adenosine deaminase: evidence for an inhibitory role of endogenous adenosine on neuromuscular transmission. Neurosci Lett 62:267ā€“270

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  39. Seelig TL, Kendig JJ (1982) Cyclic nucleotide modulation of Na+ and K+ currents in the isolated node of Ranvier. Brain Res 245:144ā€“147

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Shinozuka K, Maeda T, Hayashi E (1985) Effects of adenosine on 45Ca uptake and [3H]ace-tylcholine release in synaptosomal preparation from guinea-pig ileum myenteric plexus. Eur J Pharmacol 113:417ā€“424

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  41. Silinsky EM (1984) On the mechanism by which adenosine receptor activation inhibits the release of acetylcholine from motor nerve endings. J Physiol (Lond) 346:243ā€“256

    PubMedĀ  CASĀ  Google ScholarĀ 

  42. Willow M (1986) Pharmacology of diphenylhydantoin and carbamazepine action on voltage-sensitive sodium channels. TINS 9:147ā€“149

    CASĀ  Google ScholarĀ 

  43. Willow M, Gonoi T, Catterall WA (1985) Voltage-clamp analysis of the inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Mol Pharmacol 27:549ā€“558

    PubMedĀ  CASĀ  Google ScholarĀ 

  44. Wilson DF (1974) The effects of dibutyryl cyclic adenosine 3ā€²,5ā€²-monophosphate, theophylline and aminophylline on neuromuscular transmission in the rat. J Pharmacol Exp Ther 188:447ā€“452

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Wu PH, Phillis JW, Thierry DL (1982) Adenosine receptor agonists inhibit K+-evoked Ca2+ uptake by rat brain cortical synaptosomes. J Neurochem 39:700ā€“708

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ribeiro, J.A., SebastiĆ£o, A.M. (1987). Adenosine, Cyclic AMP and Nerve Conduction. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics