Skip to main content

Extraction of Cellulose Nanofibers from Cotton Linter and Their Composites

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

For some time now, nanocellulose has been at the focus of a good deal of industrial and scientific interest as a novel biomaterial due to their wide abundance, their renewability, and their outstanding mechanical properties. Cellulose is the most abundant biopolymer on earth, derived from a variety of living species. Cotton linter is the by-product from cotton textile and has high cellulose content, beside pectins, proteinaceous matter, waxes, ash, and minor soluble polysaccharides. As an essentially regenerative natural resource, it has been applied widely owing to its low cost. This chapter provides an overview of the recent research on the fundamental and composite properties of nanoparticles extracted from cotton linter. It contains a general introduction to cellulose and basic techniques of nanocellulose preparation with its properties. The incorporation of nanocellulose in composite materials including processing methods and properties is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: A review. Carbohydr Polym 87:963

    Article  Google Scholar 

  2. Angellier H, Putaux JL, Molina-Boisseau S, Dupeyre D, Dufresne A (2005) Starch nanocrystals fillers in an acrylic polymer matrix. Macromol Symp 221:95

    Article  Google Scholar 

  3. Araki J, Kuga S (2001) Effect of Trace Electrolyte on Liquid Crystal Type of Cellulose Microcrystals. Langmuir 17:4493

    Article  Google Scholar 

  4. Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloid Surface A 142:75

    Article  Google Scholar 

  5. Araki J, Wada M, Kuga S, Okano T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258

    Article  Google Scholar 

  6. Ass BAP, Ciacco GT, Frollini E (2006) Cellulose acetates from linters and sisal: Correlation between synthesis conditions in DMAc/LiCl and product properties. Bioresour Technol 97:1696

    Article  Google Scholar 

  7. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules 6:612

    Article  Google Scholar 

  8. Azizi Samir MAS, Alloin F, Paillet M, Dufresne A (2004) Preparation of Cellulose Whiskers Reinforced Nanocomposites from an Organic Medium Suspension. Macromolecules 37:4313

    Article  ADS  Google Scholar 

  9. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048

    Article  Google Scholar 

  10. Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8:899

    Article  Google Scholar 

  11. Capadona JR, Shanmuganathan K, Trittschuh S, Seidel S, Rowan SJ, Weder C (2009) Polymer nanocomposites with nanowhiskers isolated from microcrystallinecellulose. Biomacromolecules 10:712

    Article  Google Scholar 

  12. Chang CP, Perng YS, Wang EI (2012) Institute of Paper Science and Technology at Georgia Tech, Biomaterials Posters. www.ipst.gatech.edu/faculty/ragauskas_art/global/…/biomaterials_5.pdf

  13. Chen W, Yu H, Liu Y, Chen P, Zhang M, Yunfei H (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:804

    Google Scholar 

  14. Cherian BM, Leão AL, de Souza SF, Costa LMM, de Olyveira GM, Kottaisamy M, Nagarajan ER, Thomas S (2011) Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydr Polym 86:1790

    Article  Google Scholar 

  15. De Souza Lima M, Borsali R (2004) Rodlike Cellulose Microcrystals: Structure, Properties, and Applications. Macromol Rapid Commun 25:771

    Article  Google Scholar 

  16. De Souza Lima MM, Wong JT, Paillet M, Borsali R, Pecora R (2003) Translational and Rotational Dynamics of Rodlike Cellulose Whiskers. Langmuir 19:24

    Article  Google Scholar 

  17. Dong XM, Revol JF, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19

    Article  Google Scholar 

  18. Dufresne A (2006) Comparing the Mechanical Properties of High Performances Polymer Nanocomposites from Biological Sources. J Nanosci Nanotechnol 6:322

    Google Scholar 

  19. Dufresne A (2010) Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals. Molecules 15:4111

    Article  MathSciNet  Google Scholar 

  20. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1

    Article  ADS  Google Scholar 

  21. FAOSTAT (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS) Agricultural data (2012) Production. Crops. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/default.aspx/. Accessed 02 May 2012

  22. Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351

    Article  Google Scholar 

  23. de Garcia de Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13:261

    Article  Google Scholar 

  24. Helbert W, Cavaillé JY, Dufresne A (1996) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behavior. Polym Compos 17:604

    Article  Google Scholar 

  25. Ibrahim MM, El-Zawawy WK, Nassar MA (2010) Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydr Polym 79:694

    Article  Google Scholar 

  26. Itoh T, Brown RM Jr (1984) The assembly of cellulose microfibrils in Valonia macrophysa. Planta 160:372

    Article  Google Scholar 

  27. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44:3358

    Article  Google Scholar 

  28. Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymergrafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): A case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417

    Article  Google Scholar 

  29. Mathew AP, Dufresne A (2002) Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers. Biomacromolecules 3:609

    Article  Google Scholar 

  30. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 276/277:1

    Article  Google Scholar 

  31. Morais JPS, Rosa MF, de Souza Filho MM, do Nascimento LD, Nascimento DM, Cassales A (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91:229

    Article  Google Scholar 

  32. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776

    Article  Google Scholar 

  33. Pääkkö M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindström T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492

    Article  ADS  Google Scholar 

  34. Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295:975

    Article  Google Scholar 

  35. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5:497

    Article  Google Scholar 

  36. Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535

    Article  Google Scholar 

  37. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on l -polylactide and jute fibres. Compos Sci Technol 63:1287

    Article  Google Scholar 

  38. RÃ¥nby BG, Ribi E (1950) The microstructure of cellulose. Experientia 6:12

    Article  Google Scholar 

  39. RÃ¥nby BG (1949) Aqueous Colloidal Solutions of Cellulose Micelles. Acta Chem Scand 3:649

    Article  Google Scholar 

  40. Rhim JW (2007) Potential use of biopolymer-based nanocomposite films in food packaging applications. Food Sci Biotechnol 16:691

    Google Scholar 

  41. Roman M, Winter WT (2004) Effect of Sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules 5:1671

    Article  Google Scholar 

  42. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489

    Article  Google Scholar 

  43. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83

    Article  Google Scholar 

  44. Sczostak A (2009) Cotton linters: An alternative cellulosic raw material. Macromol Symp 280:45

    Article  Google Scholar 

  45. Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. J Mater Chem 20:180

    Article  Google Scholar 

  46. Silva R, Haraguchi SK, Muniz EC, Rubira AF (2009) Aplicac, ões de fibras lignocelulósicas na química de polímeros e em compósitos. Quim Nova 32:661

    Article  Google Scholar 

  47. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425

    Article  Google Scholar 

  48. Sorrentino A, Vittoria GGV (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Tech 18:84

    Article  Google Scholar 

  49. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211

    Article  Google Scholar 

  50. Sun Y, Yue Q, Gao B, Li Q, Huang L, Yao F, Xu X (2012) Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption. J Colloid Interface Sci 368:521

    Article  Google Scholar 

  51. Teixeira EM, Corrêa AC, Manzoli A, Leite FL, Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17:595

    Article  Google Scholar 

  52. Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crop Prod 35:92

    Article  Google Scholar 

  53. Wang SQ, Cheng QZ (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication. Part 1: Process optimization. J Appl Polym Sci 113:1270

    Article  Google Scholar 

  54. Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766

    Article  Google Scholar 

  55. Yu H, Liu RG, Shen DW, Jiang Y, Huang Y (2005) Study on morphology and orientation of cellulose in the vascular bundle of wheat straw. Polymer 46:5689

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed K. El-Zawawy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ibrahim, M.M., El-Zawawy, W.K. (2015). Extraction of Cellulose Nanofibers from Cotton Linter and Their Composites. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_76

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics