Skip to main content

Preparation of Nanocellulose from Kenaf (Hibiscus cannabinus L.) via Chemical and Chemo-mechanical Processes

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

A fundamental understanding of the relationships between basic fiber properties, methods of processing, and composite end use performance properties has been well developed due to recent advances within the biocomposites research community. Simultaneously, advanced engineered biocomposites are currently being developed to meet the diverse needs of users for high-performance materials as well as economical commodity products. Advancements in nanotechnology have led to industrial isolation of nanocrystalline cellulose [1, 2]. While nanocrystalline cellulose may be only 1/10 as strong as carbon nanotubes – currently the strongest known structural material [3, 4] – it may cost 50–1,000 times less to produce [5, 6]. Engineered biocomposites employing nanocrystalline cellulose reinforcement could soon provide advanced performance, durability, value, service life, and utility, while at the same time being a fully sustainable technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rousseau S, Tolnai B (2010) Method of manufacturing nano-crystalline cellulose film. US 2010/0124651 A1

    Google Scholar 

  2. Christiane L (2012) Hemicellulose and cellulose modifications. In: Sundqvist H (ed) Research highlights in industrial biomaterials, vol 2. VTT Research Highlights, Espool, pp 31–46

    Google Scholar 

  3. Xanthos M (2005) Chapter 2, Modification of polymer mechanical and rheological properties with functional fillers. In: Xanthos M (ed) Functional fillers for plastics. Wiley-VCH, Weinheim, FRG, p 21

    Chapter  Google Scholar 

  4. Samir MASA, Alloin F, Defresne A (2005) Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules 5:612–626

    Article  Google Scholar 

  5. Koo JH (2007) What are nanoplastics? The Future of Nanoplastics, 22–23 Feb 2007, San Antonio

    Google Scholar 

  6. Simonsen J (2005) Bio-based nanocomposites: challenges and opportunities. In: Society of Wood Science and Technology 48th annual convention, 19 June 2005, Quebec, Canada

    Google Scholar 

  7. Winandy JE, Rudie AW, Williams RS, Wegner TH (2008) Integrated biomass technologies: future vision for optimally using wood and biomass. For Prod J 58(6):6–16

    Google Scholar 

  8. Berglund L, Mohanty AK, Misra M, Drzal L (2005) Natural Fibers, Biopolymers, and Biocomposites. CRC Press, Boca Raton, pp 807–832

    Google Scholar 

  9. Wågberg L, GeroDecher MN, Tom Lindström MA, Karl A (2008) Cellulose-based nanocomposites. Langmuir 24(3):784–795

    Article  Google Scholar 

  10. Tatsumi D, Satoshi I, Takayoshi M (2002) Effect of Fiber Concentration and Axial Ratio on the Rheological Properties of Cellulose Fiber Suspensions. J Soc Rheol 30(1):27–32

    Article  Google Scholar 

  11. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules 8(6):1934–1941

    Article  Google Scholar 

  12. Tahir PM, Amel BA, Syeed OA, Saiful A, Zakiah A (2011) Retting Process Of Some Bast Plant Fibres And Its Effect On Fibre Quality: A Review. BioResources 10(4):1–8

    Google Scholar 

  13. Wood I (2000) Fibre crops-new opportunities for Australian agriculture. CSIRO, Brisbane

    Google Scholar 

  14. Rymsza TA (2000) Advancements of kenaf in the USA-kenaf paper and nonpaper developments. In: International kenaf conference, Japan Kenaf Association, p 10

    Google Scholar 

  15. Kozlowski R (2000) Potential and diversified uses of green fibers. In: 3rd international wood and natural fibers, composites symposium, pp 1–14

    Google Scholar 

  16. Fisher G (1994) Proceeding of the Tappi pulping conference 1994. Tappi Press, Atlanta, pp 91–94

    Google Scholar 

  17. FAO (2006) Jute, kenaf, sisal, aabaca, coir and allied fibers statistics. http://www.fao.org/es/esc/en/20953/21005/highlight_51023en

  18. Liu W, Drzal LT, Mohanty AK, Misra M (2007) Influence of processing methods and fiber length on physical properties of kenaf fiber reinforced soy based biocomposites. Compos B 38(3):352–359

    Article  Google Scholar 

  19. Wang B, Sain M, Oksman K (2007) Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale. Appl Compos Mater 14(2):89–103

    Article  ADS  Google Scholar 

  20. Amel BA, Paridah MT, Sudin R, Anwar U, Hussein AS (2013) Effect of fiber extraction methods on some properties of kenaf bast fiber. Industrial Crops and Products 46:117–123

    Google Scholar 

  21. Rowell RM, Stout HP (1998) Jute and kenaf. In: Handbook of fiber chemistry, 2nd edn. Marcel Dekker, New York, pp 465–504

    Google Scholar 

  22. Zhang T (2003) Improvement of kenaf yarn for apparel applications. Master thesis of Louisiana State University

    Google Scholar 

  23. Rowell RM, Han JS (2000) Characterisation and factors effecting fiber properties. In: Frolini E, Leao AL, Mattosso LHC (eds) Natural polymers and agrofibers composites. Embrapa Instrumentacao Agropecuaria, San Carlos, pp 115–127

    Google Scholar 

  24. Chen L, Columbus EP, Pote JW, Fuller MJ, Black JG (1995) Kenaf bast and core separation. Kenaf Association, Irving, pp 15–19

    Google Scholar 

  25. Calamari TA, Tao W, Goynes WR (1997) A preliminary study of kenaf fiber bundles and their composite cells. Tappi J 80(8):149–154

    Google Scholar 

  26. Abdul Khalil HPS, Ireana Yusra AF, Bhat AH, Jawaid M (2010) Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Indus Crops Prod 31(1):113–121

    Article  Google Scholar 

  27. Voulgaridis E, Passialis C, Grigoriou A (2000) Anatomical characteristics and properties of kenaf stems (Hibiscus cannabinus). IAWA J 21(4):435–442

    Article  Google Scholar 

  28. Calamari TA, Tao W, Andrew ED (1999) Kenaf properties, processing and products. Mississippi State University, Mississippi, pp 32–57

    Google Scholar 

  29. Misra DK 1987. Cereal Straw: Chapter VI in Pulp and Paper Manufacture; Secondary Fibers and Non-Wood Fibers. In: Hamilton F, Leopold B (eds). TAPPI, Atlanta, GA

    Google Scholar 

  30. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343

    Article  Google Scholar 

  31. Anon (2001) Kenaf – an alternative fiber crop. Natural Life Magazine, International Kenaf Association, p 42

    Google Scholar 

  32. Sikorski J (1963) The fine structure of animal and man-made fibers. In: Hearle JWS, Peters RH (eds) Fiber structure. Butterworth & Company/The Textile Institute, London, pp 269–310

    Chapter  Google Scholar 

  33. Mwaikambo LY, Ansell MP (2005) Mechanical properties of alkali treated plant fibers and their potential as reinforcement materials. Part I. Hemp fiber, Journal of Materials Science, 41(8): 2483–2496

    Google Scholar 

  34. Preston RD (1963) Observed structure in plant fibers. In: Hearle JWS, Peters RH (eds) Fiber structure. Butterworth & Company/The Textile Institute, London, pp 235–268

    Chapter  Google Scholar 

  35. Ranalli P (1999) Advances in hemp research. Haworth Press: Binghamton, NY, p 272

    Google Scholar 

  36. Mwaikambo LY (2002) Plant-based resources for sustainable composites. PhD thesis, University of Bath, Department of Engineering and Applied Science, Bath

    Google Scholar 

  37. Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565

    Article  Google Scholar 

  38. Wang B, Sain M (2007) Dispersion of soybean stock‐based nanofiber in a plastic matrix. Polym Int 56(4):538–546

    Article  Google Scholar 

  39. Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47(3):291–294

    Article  Google Scholar 

  40. Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  Google Scholar 

  41. Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80(1):155–159

    Article  ADS  Google Scholar 

  42. Oksman K, Sain M (2006) Introduction to cellulose nanocomposites. In: Cellulose nanocomposites; processing, characterization and properties, ASC symposium series 938, Oxford Press, pp 2–8

    Google Scholar 

  43. Bhatnagar A., Sain M (2003) Manufacturing of nanofibrils. Canadian Patent 02437616

    Google Scholar 

  44. Wise LE, Murphy M (1946) Chlorite Holocellulose, its Fractionnation and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses. Pap Trade J 122:35–43

    Google Scholar 

  45. Brigham JS, Adney WS, Himmel ME (1996) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DC, pp 119–141

    Google Scholar 

  46. Teixeira SR, Agda Eunice de Souza, Angel Fidel Vilche Peña, Regiane Godoy de Lima, Álvaro Gil Miguel (2011) Use of charcoal and partially pirolysed biomaterial in fly ash to produce briquettes: sugarcane bagasse, alternative fuel. Maximino Manzanera (ed)

    Google Scholar 

  47. Troedec M, Sedan D, Peyratout C, Bonnet J, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A 39(3):514–522

    Article  Google Scholar 

  48. Biogiotti J, Puglia D, Kenny JM (2004) A review on natural fibre-based composites-part I: structure, processing and properties of vegetable fibres. J Nat Fib 1(2):37–68

    Article  Google Scholar 

  49. Liu W, Mohanty AK, Drazal LT, Askel P, Misra M (2004) Effects of alkali treatment on the structure, morphology and thermal properties of native grass fibers as reinforcements for polymer matrix composites. J Mater Sci 39(3):1051–1054

    Article  ADS  Google Scholar 

  50. Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340(1):97–106

    Article  Google Scholar 

  51. Nacos M, Katapodis P, Pappas C, Daferera D, Tarantilis PA, Christakopoulos P, Polissiou M (2006) Kenaf xylan - A source of biologically active acidic oligosaccharides. Carbohydr Polym 66(1):126–134

    Article  Google Scholar 

  52. Keshk S, Suwinarti W, Sameshima K (2006) Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydr Polym 65(2):202–206

    Article  Google Scholar 

  53. Silva MC, Lopes OR, Colodette JL, Porto AO, Rieumont J, Chaussy D, Belgacem MN, Silva GG (2008) Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres. Ind Crop Prod 27(3):288–295

    Article  Google Scholar 

  54. Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Part II: physicochemical properties. Carbohydr Polym 83(2):676–687

    Article  Google Scholar 

  55. Araki J, Wada M, Kuga S, Okano T (2000) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142(1):75–82

    Article  Google Scholar 

  56. Yang H, Yan R, Chen H, Lee D, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  Google Scholar 

  57. Mehdi J, Jalaludin H, Alireza S, Manjusri M, Kristiina O (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2):626–639

    Google Scholar 

  58. Khalil HPA, Ismail H, Rozman HD, Ahmad MN (2001) The effect of acetylation on interfacial shear strength between plant fibres and various matrices. Eur Polym J 37(5):1037–1045

    Article  Google Scholar 

  59. Alemdar A, Sain M (2007) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671

    Article  Google Scholar 

  60. Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrol 2(2):331–349

    Article  Google Scholar 

  61. Ashori A, Jalaluddin H, Raverty WD, MohdNor MY (2006) Chemical and morphological characteristics of Malaysian cultivated kenaf (Hibiscus cannabinus) fiber. Polym-Plast Technol Eng J 45(1):131–134

    Article  Google Scholar 

  62. Clemons CM, Canlfieid DF (2005) Natural fibers, Chapter 11. In: Xanthos M (ed) Functional fillers for plastics. Wiley-VCH, Weinheim

    Google Scholar 

  63. Siqueira G, Abdillahi H, Bras J, Dufresne A (2010) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17(2):289–298

    Article  Google Scholar 

  64. Sgriccia N, Hawley M, Misra M (2008) Characterization of natural fiber surfaces and natural fibre composites. Compos. Part A-Appl. S. 39(10):1632–1637

    Article  Google Scholar 

  65. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A 36:1110–1118

    Article  Google Scholar 

  66. Gassan J, Chate A, Bledzki AK (2001) Calculation of elastic properties of natural fibres. J. Mater. Sci. 36(15): 3715–3720

    Article  ADS  Google Scholar 

  67. Alann A (2006) Fibres for strengthening of timber structures. Research report: 03, http://www.google.com.my/#hl=en&&sa=X&ei=F1bATP6sOZL5cZqslJoM&ved=0CBQQvgUoAA&q,Accessed on 21.10.2010

  68. Rowell RM, Sanadi AR, Caulfield DF, Jacobson RE (1997) Utilization of natural fibers in plastic composites: problems and opportunities. Lignocellulosic-plastic composites: 23–51

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Economic Planning Unit (EPU) and the Ministry of Plantation Industry and Commodity (MPIC), Malaysia, for funding the project under grant KENAF-EPU 5488500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paridah Md. Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tahir, P.M., Zaini, L.H., Jonoobi, M., Abdul Khalil, H.P.S. (2015). Preparation of Nanocellulose from Kenaf (Hibiscus cannabinus L.) via Chemical and Chemo-mechanical Processes. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_52

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics