Skip to main content

Chemical Bonding and Aromaticity in Poly-heterocyclic Compounds

  • Chapter
  • First Online:
Structure, Bonding and Reactivity of Heterocyclic Compounds

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 38))

Abstract

This chapter is devoted to a theoretical analysis of the nature of chemical bonding, and in particular the aromaticity, of some intriguing poly-heterocyclic compounds which have recently been synthesized including the sulflowers and derivatives. The novel concept of disk aromaticity proposed as a measure of the aromatic character of planar double-ring boron clusters is applied in this context for poly-heterocyclic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schleyer PR (2001) Chem Rev 101:1115–1118

    Article  CAS  Google Scholar 

  2. Schleyer PR (2005) Chem Rev 105:3433–3435

    Article  CAS  Google Scholar 

  3. Chattaraj PK (2012) Aromaticity and metal clusters. CRC Press, London

    Google Scholar 

  4. Kekulé A (1865) Bull Soc Chim Paris 3:98–110

    Google Scholar 

  5. Radenkovic S, Gutman I, Bultinck P (2012) J Phys Chem A 116:9421–9430

    Article  CAS  Google Scholar 

  6. Krygowski TM, Cyranski MK (2009) Aromaticity in heterocyclic compounds in topic hetero chemistry, vol 19. Springer, Berlin

    Book  Google Scholar 

  7. Huong VTT, Tai TB, Nguyen MT (2012) Phys Chem Chem Phys 14:14832–14841

    Article  CAS  Google Scholar 

  8. Huong VTT, Nguyen MT, Tai TB, Nguyen MT (2013) J Phys Chem C. doi:10.1021/jp401191a

    Google Scholar 

  9. Watson MD, Fechtenkötter A, Müllen K (2001) Chem Rev 101:1267–1300

    Article  CAS  Google Scholar 

  10. Randic M (2003) Chem Rev 103:3449–3605

    Article  CAS  Google Scholar 

  11. Tai TB, Nguyen MT (2012) Angew Chem Int Ed 52:4554–4557

    Article  Google Scholar 

  12. Boldyrev AI, Wang LS (2005) Chem Rev 105:3716–3757

    Article  CAS  Google Scholar 

  13. Tai TB, Nguyen MT, Nguyen MT (2012) Theor Chem Acc 131:1241

    Article  Google Scholar 

  14. Tai TB, Ceulemans A, Nguyen MT (2012) Chem Eur J 18:4510–4512

    Article  CAS  Google Scholar 

  15. Tai TB, Nguyen MT, Nguyen MT (2012) Chem Phys Lett 530:71–76

    Article  CAS  Google Scholar 

  16. Tai TB, Kadłubanski P, Roszak S, Majumdar D, Leszczynski J, Nguyen MT (2011) Chem Phys Chem 12:2948–2958

    CAS  Google Scholar 

  17. Tai TB, Nguyen MT (2010) Chem Phys 375:35–45

    Article  CAS  Google Scholar 

  18. Tai TB, Grant DJ, Nguyen MT, Dixon DA (2010) J Phys Chem A 114:994–1007

    Article  CAS  Google Scholar 

  19. Tai TB, Nguyen MT (2009) Chem Phys Lett 483:35–42

    Article  CAS  Google Scholar 

  20. Hirsch A, Chen Z, Jiao H (2000) Angew Chem Int Ed 39:3915–3917

    Article  CAS  Google Scholar 

  21. Chen Z, King RB (2005) Chem Rev 105:3613–3642

    Article  CAS  Google Scholar 

  22. Bühl M, Hirsch A (2001) Chem Rev 101:1153–1183

    Article  Google Scholar 

  23. Tai TB, Nguyen MT (2013) Chem Commun 49:913–915

    Article  CAS  Google Scholar 

  24. Tam NM, Tai TB, Nguyen MT (2012) J Phys Chem C 116:20086–20098

    Article  CAS  Google Scholar 

  25. Tai TB, Nguyen MT (2012) J Comput Chem 33:800–809

    Article  CAS  Google Scholar 

  26. Tai TB, Tam NM, Nguyen MT (2011) Chem Phys 388:1–8

    Article  CAS  Google Scholar 

  27. Tai TB, Nguyen MT (2011) J Phys Chem A 115:9993–9999

    Article  CAS  Google Scholar 

  28. Tai TB, Nguyen MT (2011) J Chem Theory Comput 7:1119–1130

    Article  CAS  Google Scholar 

  29. Tai TB, Hue NTM, Nguyen MT (2011) Chem Phys Lett 502:187–193

    Article  CAS  Google Scholar 

  30. Tai TB, Nhat PV, Nguyen MT (2010) Phys Chem Chem Phys 12:11477–11486

    Article  CAS  Google Scholar 

  31. Tai TB, Nguyen MT (2010) Chem Phys Lett 489:75–80

    Article  CAS  Google Scholar 

  32. Tai TB, Nguyen MT (2010) Chem Phys Lett 492:290–296

    Article  CAS  Google Scholar 

  33. Hückel E (1931) Z Phys 70:204–286

    Article  Google Scholar 

  34. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  35. Schleyer PR, Jiao H, Hommes HJRE, Malkin VG, Malkina O (1997) J Am Chem Soc 119:12669–12670

    Article  CAS  Google Scholar 

  36. Chen Z, Wannere CS, Corminboeur C, Puchta R, Schleyer PR (2005) Chem Rev 105:3842–3888

    Article  CAS  Google Scholar 

  37. Pauling L (1936) J Chem Phys 4:673–677

    Article  CAS  Google Scholar 

  38. London F (1937) J Phys Radium 8:397–409

    Article  CAS  Google Scholar 

  39. Pauling L, Sherman J (1933) J Chem Phys 1:606–617

    Article  CAS  Google Scholar 

  40. Dewar MJS, Gleicher GJ (1965) J Am Chem Soc 87:685–692

    Article  CAS  Google Scholar 

  41. Schaad LJ, Hess BA (2001) Chem Rev 101:1465–1476

    Article  CAS  Google Scholar 

  42. Aihara J (1976) J Am Chem Soc 98:2750–2758

    Article  CAS  Google Scholar 

  43. Faraday M (1825) Philos Trans R Soc Lond 115:440–466.

    Article  Google Scholar 

  44. Dewar MJS, McKee ML (1980) Pure Appl Chem 52:1431–1441

    Article  CAS  Google Scholar 

  45. Dewar MJS (1984) J Am Chem Soc 106:669–682

    Article  CAS  Google Scholar 

  46. Chandrasekhar J, Jemmis ED, Schleyer PR (1979) Tetrahedron Lett 20:3707–3710

    Article  Google Scholar 

  47. Baird NC (1972) J Am Chem Soc 94:4941–4948

    Article  CAS  Google Scholar 

  48. Aihara J (1978) J Am Chem Soc 100:3339–3342

    Article  CAS  Google Scholar 

  49. Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Angew Chem Int Ed 42:6004–6008

    Article  CAS  Google Scholar 

  50. Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) Coord Chem Rev 250:2811–2866

    Article  CAS  Google Scholar 

  51. Heilbronner E (1964) Tetrahedron Lett 1923–1926

    Google Scholar 

  52. Möbius AF (1865) über die Bestimmung des Inhaltes eines Polyëders. 17: 31–68

    Google Scholar 

  53. Listing JB (1861) Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen 10:97–182

    Google Scholar 

  54. Herges R (2006) Chem Rev 106:4820–4842

    Article  CAS  Google Scholar 

  55. Rzepa HS (2005) Chem Rev 105:3697–3715

    Article  CAS  Google Scholar 

  56. Kawasw T, Oda M (2004) Angew Chem Int Ed 43:4396–4398

    Article  Google Scholar 

  57. Mauksch M, Gogonea V, Jiao H, Schleyer PR (1998) Angew Chem Int Ed 37:2395–2397

    Article  CAS  Google Scholar 

  58. Pascal P (1910) Ann Chim Phys 19:5–70

    CAS  Google Scholar 

  59. Dauben HJ Jr, Wilson JD, Laity JL (1968) J Am Chem Soc 90:811–813

    Article  CAS  Google Scholar 

  60. Paquette LA, Bauer W, Sivik MR, Bühl M, Feigel M, Schleyer PR (1990) J Am Chem Soc 112:8776–8789

    Article  CAS  Google Scholar 

  61. Bohmann JA, Weinhold F, Farrar TC (1997) J Chem Phys 107:1173–1184

    Article  CAS  Google Scholar 

  62. Pauling LJ (1936) Chem Phys 4:673–677

    CAS  Google Scholar 

  63. Pople JA (1958) Mol Phys 1:175–180

    Article  CAS  Google Scholar 

  64. McWeeny R (1958) Mol Phys 1:311–321

    Article  CAS  Google Scholar 

  65. Lazzeretti P, Zanasi R (1981) J Phys Chem 75:5019–5027

    Article  CAS  Google Scholar 

  66. Lazzeretti P, Zanasi R (1981) Chem Phys Lett 80:533–536

    Article  CAS  Google Scholar 

  67. Lazzeretti P (2000) Ring currents, vol 36, Progress in nuclear magnetic resonance spectroscopy. Elsevier, Amsterdam, pp 1–88

    Google Scholar 

  68. Steiner E, Fowler P (1996) Int J Quantum Chem 60:609–616

    Article  CAS  Google Scholar 

  69. Juselius J, Sundholm D (1999) Phys Chem Chem Phys 1:3429–3435

    Article  CAS  Google Scholar 

  70. Gomes JANF, Mallion RB (2001) Chem Rev 101:1349–1383

    Article  CAS  Google Scholar 

  71. Poater J, Duran M, Sol M, Silvi B (2005) Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  72. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397

    Article  CAS  Google Scholar 

  73. Silvi B, Savin A (1994) Nature 371:683–686

    Article  CAS  Google Scholar 

  74. Melin J, Fuentealba P (2003) Int J Quantum Chem 92:381–390

    Article  CAS  Google Scholar 

  75. Nguyen MT, Kryachko ES, Vanquickenborne LG (2003) In: Rappoport Z (ed) The chemistry of phenols, Patai series, The chemistry of functional groups, part 1. Wiley, Hoboken, pp 1–198

    Chapter  Google Scholar 

  76. Santos JC, Tiznado W, Contreras R, Fuentealba F (2004) J Chem Phys 120:1670–1673

    Article  CAS  Google Scholar 

  77. Heine T, Schleyer PR, Corminboeuf C, Seifert G, Reviakine R, Weber J (2003) J Phys Chem A 107:6470–6475

    Article  CAS  Google Scholar 

  78. Steiner E, Fowler PW (2001) J Phys Chem A105:9553–9562

    Article  Google Scholar 

  79. Corminboeuf C, Heine T, Seifert G, Schleyer PR, Weber J (2004) Phys Chem Chem Phys 6:273–276

    Article  CAS  Google Scholar 

  80. Nyulaszi L, Schleyer PR (1999) J Am Chem Soc 1121:6872–6875

    Article  Google Scholar 

  81. Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99–117, and references therein

    Article  CAS  Google Scholar 

  82. Nelson SF, Lin YY, Gundlach DJ, Jackson TN (1998) Appl Phys Lett 72:1854/01-03

    Article  Google Scholar 

  83. Cicoira F, Santato C (2002) Adv Funct Mater 17:3421–3434

    Article  Google Scholar 

  84. Laquindanum JG, Katz HE, Lovinger AJ (1998) J Am Chem Soc 120:664–672

    Article  CAS  Google Scholar 

  85. Garnier F, Yassar A, Hajlaoui R, Horowitz G, Deloffre F, Servet B, Ries S, Alnot P (1993) J Am Chem Soc 115:8716–8721

    Article  CAS  Google Scholar 

  86. Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Chem Rev 112:2208–2267

    Article  CAS  Google Scholar 

  87. Anthony JE (2006) Chem Rev 106:5028–5048

    Article  CAS  Google Scholar 

  88. Murphy AR, Frechet JMJ (2007) Chem Rev 107:1066–1096

    Article  CAS  Google Scholar 

  89. Mishra A, Ma CQ, Bauerle P (2009) Chem Rev 109:1141–1276

    Article  CAS  Google Scholar 

  90. Barth WE, Lawton RG (1966) J Am Chem Soc 88:380–381

    Article  CAS  Google Scholar 

  91. Robertson JM, White JG (1945) J Chem Soc: 607–617

    Google Scholar 

  92. Steiner E, Fowler PW, Jenneskens L (2001) Angew Chem Int Ed 40:362–365

    Article  CAS  Google Scholar 

  93. Acocella A, Havenith RWA, Steiner E, Fowler PW, Jenneskens LW (2002) Chem Phys Lett 363:64–72

    Article  CAS  Google Scholar 

  94. Yamamoto K, Harada T, Nakazaki M, Nakao T, Kay Y, Harada S, Kasai K (1998) J Am Chem Soc 110:3578–3584

    Article  Google Scholar 

  95. Chernichenko KY, Balenkova ES, Nenajdenko VG (2008) Mendeleev Commun 18:171–179

    Article  CAS  Google Scholar 

  96. Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG (2006) Angew Chem Int Ed 45:7367–7370

    Article  CAS  Google Scholar 

  97. Dadvand A, Cicoira F, Chernichenko KY, Balenkova ES, Osuma RM, Rosei F, Nenajdenko VG, Perepichka DF (2008) Chem Commun 5354–5356

    Google Scholar 

  98. Gahungu G, Zhang J (2008) Phys Chem Chem Phys 10:1743–1747

    Article  CAS  Google Scholar 

  99. Salcedo R, Sansores LE, Picazo A, Sanson L (2004) J Mol Struct THEOCHEM 678:211–215

    Article  CAS  Google Scholar 

  100. Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) Nat Chem 2:202–206

    Article  Google Scholar 

  101. Steiner E (2008) The chemistry maths book. Oxford University Press, Oxford, pp 391–413

    Google Scholar 

  102. Erhardt S, Frenking G, Chen Z, Schleyer PR (2005) Angew Chem Int Ed 44:1078–1082

    Article  CAS  Google Scholar 

  103. Wu YB, Yuan CX, Yang P (2006) J Mol Struct THEOCHEM 765:35–38

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the KU Leuven Research Council for continuing support (GOA, IDO, and PDM programs). We thank FWO Vlaanderen for a research grant on non-classical aromaticity and a postdoctoral fellowship (TBT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Tho Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tai, T.B., Huong, V.T.T., Nguyen, M.T. (2014). Chemical Bonding and Aromaticity in Poly-heterocyclic Compounds. In: De Proft, F., Geerlings, P. (eds) Structure, Bonding and Reactivity of Heterocyclic Compounds. Topics in Heterocyclic Chemistry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45149-2_6

Download citation

Publish with us

Policies and ethics