Advertisement

Chemical Bonding and Aromaticity in Poly-heterocyclic Compounds

  • Truong Ba Tai
  • Vu Thi Thu Huong
  • Minh Tho NguyenEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 38)

Abstract

This chapter is devoted to a theoretical analysis of the nature of chemical bonding, and in particular the aromaticity, of some intriguing poly-heterocyclic compounds which have recently been synthesized including the sulflowers and derivatives. The novel concept of disk aromaticity proposed as a measure of the aromatic character of planar double-ring boron clusters is applied in this context for poly-heterocyclic compounds.

Keywords

Poly-heterocyclic compounds Electron localization function (ELF) Chemical bonding Aromaticity Disk aromaticity 

Notes

Acknowledgments

The authors are indebted to the KU Leuven Research Council for continuing support (GOA, IDO, and PDM programs). We thank FWO Vlaanderen for a research grant on non-classical aromaticity and a postdoctoral fellowship (TBT).

References

  1. 1.
    Schleyer PR (2001) Chem Rev 101:1115–1118CrossRefGoogle Scholar
  2. 2.
    Schleyer PR (2005) Chem Rev 105:3433–3435CrossRefGoogle Scholar
  3. 3.
    Chattaraj PK (2012) Aromaticity and metal clusters. CRC Press, LondonGoogle Scholar
  4. 4.
    Kekulé A (1865) Bull Soc Chim Paris 3:98–110Google Scholar
  5. 5.
    Radenkovic S, Gutman I, Bultinck P (2012) J Phys Chem A 116:9421–9430CrossRefGoogle Scholar
  6. 6.
    Krygowski TM, Cyranski MK (2009) Aromaticity in heterocyclic compounds in topic hetero chemistry, vol 19. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Huong VTT, Tai TB, Nguyen MT (2012) Phys Chem Chem Phys 14:14832–14841CrossRefGoogle Scholar
  8. 8.
    Huong VTT, Nguyen MT, Tai TB, Nguyen MT (2013) J Phys Chem C. doi: 10.1021/jp401191a Google Scholar
  9. 9.
    Watson MD, Fechtenkötter A, Müllen K (2001) Chem Rev 101:1267–1300CrossRefGoogle Scholar
  10. 10.
    Randic M (2003) Chem Rev 103:3449–3605CrossRefGoogle Scholar
  11. 11.
    Tai TB, Nguyen MT (2012) Angew Chem Int Ed 52:4554–4557CrossRefGoogle Scholar
  12. 12.
    Boldyrev AI, Wang LS (2005) Chem Rev 105:3716–3757CrossRefGoogle Scholar
  13. 13.
    Tai TB, Nguyen MT, Nguyen MT (2012) Theor Chem Acc 131:1241CrossRefGoogle Scholar
  14. 14.
    Tai TB, Ceulemans A, Nguyen MT (2012) Chem Eur J 18:4510–4512CrossRefGoogle Scholar
  15. 15.
    Tai TB, Nguyen MT, Nguyen MT (2012) Chem Phys Lett 530:71–76CrossRefGoogle Scholar
  16. 16.
    Tai TB, Kadłubanski P, Roszak S, Majumdar D, Leszczynski J, Nguyen MT (2011) Chem Phys Chem 12:2948–2958Google Scholar
  17. 17.
    Tai TB, Nguyen MT (2010) Chem Phys 375:35–45CrossRefGoogle Scholar
  18. 18.
    Tai TB, Grant DJ, Nguyen MT, Dixon DA (2010) J Phys Chem A 114:994–1007CrossRefGoogle Scholar
  19. 19.
    Tai TB, Nguyen MT (2009) Chem Phys Lett 483:35–42CrossRefGoogle Scholar
  20. 20.
    Hirsch A, Chen Z, Jiao H (2000) Angew Chem Int Ed 39:3915–3917CrossRefGoogle Scholar
  21. 21.
    Chen Z, King RB (2005) Chem Rev 105:3613–3642CrossRefGoogle Scholar
  22. 22.
    Bühl M, Hirsch A (2001) Chem Rev 101:1153–1183CrossRefGoogle Scholar
  23. 23.
    Tai TB, Nguyen MT (2013) Chem Commun 49:913–915CrossRefGoogle Scholar
  24. 24.
    Tam NM, Tai TB, Nguyen MT (2012) J Phys Chem C 116:20086–20098CrossRefGoogle Scholar
  25. 25.
    Tai TB, Nguyen MT (2012) J Comput Chem 33:800–809CrossRefGoogle Scholar
  26. 26.
    Tai TB, Tam NM, Nguyen MT (2011) Chem Phys 388:1–8CrossRefGoogle Scholar
  27. 27.
    Tai TB, Nguyen MT (2011) J Phys Chem A 115:9993–9999CrossRefGoogle Scholar
  28. 28.
    Tai TB, Nguyen MT (2011) J Chem Theory Comput 7:1119–1130CrossRefGoogle Scholar
  29. 29.
    Tai TB, Hue NTM, Nguyen MT (2011) Chem Phys Lett 502:187–193CrossRefGoogle Scholar
  30. 30.
    Tai TB, Nhat PV, Nguyen MT (2010) Phys Chem Chem Phys 12:11477–11486CrossRefGoogle Scholar
  31. 31.
    Tai TB, Nguyen MT (2010) Chem Phys Lett 489:75–80CrossRefGoogle Scholar
  32. 32.
    Tai TB, Nguyen MT (2010) Chem Phys Lett 492:290–296CrossRefGoogle Scholar
  33. 33.
    Hückel E (1931) Z Phys 70:204–286CrossRefGoogle Scholar
  34. 34.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318CrossRefGoogle Scholar
  35. 35.
    Schleyer PR, Jiao H, Hommes HJRE, Malkin VG, Malkina O (1997) J Am Chem Soc 119:12669–12670CrossRefGoogle Scholar
  36. 36.
    Chen Z, Wannere CS, Corminboeur C, Puchta R, Schleyer PR (2005) Chem Rev 105:3842–3888CrossRefGoogle Scholar
  37. 37.
    Pauling L (1936) J Chem Phys 4:673–677CrossRefGoogle Scholar
  38. 38.
    London F (1937) J Phys Radium 8:397–409CrossRefGoogle Scholar
  39. 39.
    Pauling L, Sherman J (1933) J Chem Phys 1:606–617CrossRefGoogle Scholar
  40. 40.
    Dewar MJS, Gleicher GJ (1965) J Am Chem Soc 87:685–692CrossRefGoogle Scholar
  41. 41.
    Schaad LJ, Hess BA (2001) Chem Rev 101:1465–1476CrossRefGoogle Scholar
  42. 42.
    Aihara J (1976) J Am Chem Soc 98:2750–2758CrossRefGoogle Scholar
  43. 43.
    Faraday M (1825) Philos Trans R Soc Lond 115:440–466.CrossRefGoogle Scholar
  44. 44.
    Dewar MJS, McKee ML (1980) Pure Appl Chem 52:1431–1441CrossRefGoogle Scholar
  45. 45.
    Dewar MJS (1984) J Am Chem Soc 106:669–682CrossRefGoogle Scholar
  46. 46.
    Chandrasekhar J, Jemmis ED, Schleyer PR (1979) Tetrahedron Lett 20:3707–3710CrossRefGoogle Scholar
  47. 47.
    Baird NC (1972) J Am Chem Soc 94:4941–4948CrossRefGoogle Scholar
  48. 48.
    Aihara J (1978) J Am Chem Soc 100:3339–3342CrossRefGoogle Scholar
  49. 49.
    Zhai HJ, Alexandrova AN, Birch KA, Boldyrev AI, Wang LS (2003) Angew Chem Int Ed 42:6004–6008CrossRefGoogle Scholar
  50. 50.
    Alexandrova AN, Boldyrev AI, Zhai HJ, Wang LS (2006) Coord Chem Rev 250:2811–2866CrossRefGoogle Scholar
  51. 51.
    Heilbronner E (1964) Tetrahedron Lett 1923–1926Google Scholar
  52. 52.
    Möbius AF (1865) über die Bestimmung des Inhaltes eines Polyëders. 17: 31–68Google Scholar
  53. 53.
    Listing JB (1861) Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen 10:97–182Google Scholar
  54. 54.
    Herges R (2006) Chem Rev 106:4820–4842CrossRefGoogle Scholar
  55. 55.
    Rzepa HS (2005) Chem Rev 105:3697–3715CrossRefGoogle Scholar
  56. 56.
    Kawasw T, Oda M (2004) Angew Chem Int Ed 43:4396–4398CrossRefGoogle Scholar
  57. 57.
    Mauksch M, Gogonea V, Jiao H, Schleyer PR (1998) Angew Chem Int Ed 37:2395–2397CrossRefGoogle Scholar
  58. 58.
    Pascal P (1910) Ann Chim Phys 19:5–70Google Scholar
  59. 59.
    Dauben HJ Jr, Wilson JD, Laity JL (1968) J Am Chem Soc 90:811–813CrossRefGoogle Scholar
  60. 60.
    Paquette LA, Bauer W, Sivik MR, Bühl M, Feigel M, Schleyer PR (1990) J Am Chem Soc 112:8776–8789CrossRefGoogle Scholar
  61. 61.
    Bohmann JA, Weinhold F, Farrar TC (1997) J Chem Phys 107:1173–1184CrossRefGoogle Scholar
  62. 62.
    Pauling LJ (1936) Chem Phys 4:673–677Google Scholar
  63. 63.
    Pople JA (1958) Mol Phys 1:175–180CrossRefGoogle Scholar
  64. 64.
    McWeeny R (1958) Mol Phys 1:311–321CrossRefGoogle Scholar
  65. 65.
    Lazzeretti P, Zanasi R (1981) J Phys Chem 75:5019–5027CrossRefGoogle Scholar
  66. 66.
    Lazzeretti P, Zanasi R (1981) Chem Phys Lett 80:533–536CrossRefGoogle Scholar
  67. 67.
    Lazzeretti P (2000) Ring currents, vol 36, Progress in nuclear magnetic resonance spectroscopy. Elsevier, Amsterdam, pp 1–88Google Scholar
  68. 68.
    Steiner E, Fowler P (1996) Int J Quantum Chem 60:609–616CrossRefGoogle Scholar
  69. 69.
    Juselius J, Sundholm D (1999) Phys Chem Chem Phys 1:3429–3435CrossRefGoogle Scholar
  70. 70.
    Gomes JANF, Mallion RB (2001) Chem Rev 101:1349–1383CrossRefGoogle Scholar
  71. 71.
    Poater J, Duran M, Sol M, Silvi B (2005) Chem Rev 105:3911–3947CrossRefGoogle Scholar
  72. 72.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  73. 73.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  74. 74.
    Melin J, Fuentealba P (2003) Int J Quantum Chem 92:381–390CrossRefGoogle Scholar
  75. 75.
    Nguyen MT, Kryachko ES, Vanquickenborne LG (2003) In: Rappoport Z (ed) The chemistry of phenols, Patai series, The chemistry of functional groups, part 1. Wiley, Hoboken, pp 1–198CrossRefGoogle Scholar
  76. 76.
    Santos JC, Tiznado W, Contreras R, Fuentealba F (2004) J Chem Phys 120:1670–1673CrossRefGoogle Scholar
  77. 77.
    Heine T, Schleyer PR, Corminboeuf C, Seifert G, Reviakine R, Weber J (2003) J Phys Chem A 107:6470–6475CrossRefGoogle Scholar
  78. 78.
    Steiner E, Fowler PW (2001) J Phys Chem A105:9553–9562CrossRefGoogle Scholar
  79. 79.
    Corminboeuf C, Heine T, Seifert G, Schleyer PR, Weber J (2004) Phys Chem Chem Phys 6:273–276CrossRefGoogle Scholar
  80. 80.
    Nyulaszi L, Schleyer PR (1999) J Am Chem Soc 1121:6872–6875CrossRefGoogle Scholar
  81. 81.
    Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99–117, and references thereinCrossRefGoogle Scholar
  82. 82.
    Nelson SF, Lin YY, Gundlach DJ, Jackson TN (1998) Appl Phys Lett 72:1854/01-03CrossRefGoogle Scholar
  83. 83.
    Cicoira F, Santato C (2002) Adv Funct Mater 17:3421–3434CrossRefGoogle Scholar
  84. 84.
    Laquindanum JG, Katz HE, Lovinger AJ (1998) J Am Chem Soc 120:664–672CrossRefGoogle Scholar
  85. 85.
    Garnier F, Yassar A, Hajlaoui R, Horowitz G, Deloffre F, Servet B, Ries S, Alnot P (1993) J Am Chem Soc 115:8716–8721CrossRefGoogle Scholar
  86. 86.
    Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Chem Rev 112:2208–2267CrossRefGoogle Scholar
  87. 87.
    Anthony JE (2006) Chem Rev 106:5028–5048CrossRefGoogle Scholar
  88. 88.
    Murphy AR, Frechet JMJ (2007) Chem Rev 107:1066–1096CrossRefGoogle Scholar
  89. 89.
    Mishra A, Ma CQ, Bauerle P (2009) Chem Rev 109:1141–1276CrossRefGoogle Scholar
  90. 90.
    Barth WE, Lawton RG (1966) J Am Chem Soc 88:380–381CrossRefGoogle Scholar
  91. 91.
    Robertson JM, White JG (1945) J Chem Soc: 607–617Google Scholar
  92. 92.
    Steiner E, Fowler PW, Jenneskens L (2001) Angew Chem Int Ed 40:362–365CrossRefGoogle Scholar
  93. 93.
    Acocella A, Havenith RWA, Steiner E, Fowler PW, Jenneskens LW (2002) Chem Phys Lett 363:64–72CrossRefGoogle Scholar
  94. 94.
    Yamamoto K, Harada T, Nakazaki M, Nakao T, Kay Y, Harada S, Kasai K (1998) J Am Chem Soc 110:3578–3584CrossRefGoogle Scholar
  95. 95.
    Chernichenko KY, Balenkova ES, Nenajdenko VG (2008) Mendeleev Commun 18:171–179CrossRefGoogle Scholar
  96. 96.
    Chernichenko KY, Sumerin VV, Shpanchenko RV, Balenkova ES, Nenajdenko VG (2006) Angew Chem Int Ed 45:7367–7370CrossRefGoogle Scholar
  97. 97.
    Dadvand A, Cicoira F, Chernichenko KY, Balenkova ES, Osuma RM, Rosei F, Nenajdenko VG, Perepichka DF (2008) Chem Commun 5354–5356Google Scholar
  98. 98.
    Gahungu G, Zhang J (2008) Phys Chem Chem Phys 10:1743–1747CrossRefGoogle Scholar
  99. 99.
    Salcedo R, Sansores LE, Picazo A, Sanson L (2004) J Mol Struct THEOCHEM 678:211–215CrossRefGoogle Scholar
  100. 100.
    Huang W, Sergeeva AP, Zhai HJ, Averkiev BB, Wang LS, Boldyrev AI (2010) Nat Chem 2:202–206CrossRefGoogle Scholar
  101. 101.
    Steiner E (2008) The chemistry maths book. Oxford University Press, Oxford, pp 391–413Google Scholar
  102. 102.
    Erhardt S, Frenking G, Chen Z, Schleyer PR (2005) Angew Chem Int Ed 44:1078–1082CrossRefGoogle Scholar
  103. 103.
    Wu YB, Yuan CX, Yang P (2006) J Mol Struct THEOCHEM 765:35–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Truong Ba Tai
    • 1
  • Vu Thi Thu Huong
    • 1
  • Minh Tho Nguyen
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of LeuvenLeuvenBelgium

Personalised recommendations