Skip to main content

Techniques for Studying Neuromast Function in Zebrafish

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

The mechano-sensitive hair cells of superficial neuromasts (SNs) of the zebrafish lateral line organ are mechanically coupled to the water motion via gelatinous cupulae. SNs transduce the water motion into electrical signals that can be measured with an extracellular electrode. In this chapter, we review the preparation and measurement techniques for quantifying cupular dynamics and extracellular receptor potentials (ERPs) of SNs. We compare the measuring techniques used in hair cell mechano-physiology and give instructions for building both an intensity-based and an interferometry-based microscope system. We compare the methods used for mechanical excitation of mechanoreceptors, including dipole sources, microfluid jets (FJ) and elastic as well as stiff microprobes. We present the caveats of the measurements of ERPs, especially the crosstalk from the stimulation device. We show that ERPs at twice the stimulation frequency of zebrafish SNs are a reliable measure of mechano-electrical coupling in a restricted range of both stimulus frequency and amplitude. We report the measurements of sub-micrometre motion of SN cupulae using a heterodyne laser interferometer microscope (HLIM) and continuous sinusoidal stimulation with a micro FJ device. Light interference signals were decoded with a phase- and frequency modulation scheme. We compare the robustness of both decoding strategies in terms of accuracy of the measured cupular displacement and velocity. Both approaches can faithfully monitor cupular movement down to a few nanometres, though the velocity decoding technique offered a slightly superior performance and is recommended for higher stimulation frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

Charge-coupled device

CMOS:

Complementary metal oxide semiconductor

CN:

Canal neuromast

DIC:

Differential interference contrast

ERP:

Extracellular receptor potential

FFT:

Fast Fourier transform

FJ:

Fluid jet (device)

HLIM:

Heterodyning laser interferometer microscopy/microscope

LED:

Light emitting diode

MIPO:

Microphonic potential

PD:

Photodiode

PMT:

Photomultiplier tube

PSD:

Position sensitive device

RMS:

Root mean square

SN:

Superficial neuromast

SNR:

Signal-to-noise ratio

References

  • Besch SR, Suchyna T, Sachs F (2002) High-speed pressure clamp. Pflügers Arch 445:161–166

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J (1990) Behavioral and neurophysiological assessment of lateral line sensitivity in the mottled sculpin, Cottus bairdi. J Comp Physiol A 167:557–567

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:606–626

    Article  CAS  PubMed  Google Scholar 

  • Corey DP, Hudspeth AJ (1983) Analysis of the microphonic potential of the bullfrog’s sacculus. J Neurosci 3:942–961

    CAS  PubMed  Google Scholar 

  • Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin SY, Vollrath MA, Amalfitano A, Cheung EL, Derfler BH (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730

    Article  CAS  PubMed  Google Scholar 

  • Crawford AC, Fettiplace R (1985) The mechanical properties of ciliary bundles of turtle cochlear hair cells. J Physiol 364:359–379

    CAS  PubMed  Google Scholar 

  • Ćurčić-Blake B (2006) Spatial and temporal characteristics of fish lateral line detection. PhD thesis, University of Groningen, The Netherlands. Available via University of Groningen PhD Thesis repository. http://irs.ub.rug.nl/ppn/296009164. Accessed 13 Jan 2013

  • Ćurčić-Blake B, van Netten SM (2005) Rapid responses of the cupula in the lateral line of ruffe (Gymnocephalus cernuus). J Comp Physiol A 19:393–401

    Article  Google Scholar 

  • Ćurčić-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209:1548–1559

    Article  PubMed  Google Scholar 

  • Denk W, Webb WW (1992) Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells. Hearing Res 60:89–102

    Article  CAS  Google Scholar 

  • Denton EJ, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B 218:1–26

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev 38:51–105

    Article  CAS  PubMed  Google Scholar 

  • Dinklo T (2005) Mechano- and electrophysiological studies on cochlear hair cells and superficial lateral line cupulae. PhD thesis, University of Groningen, The Netherlands. Available via University of Groningen PhD Thesis repository. http://irs.ub.rug.nl/ppn/271278285. Accessed 13 Jan 2013

  • Dinklo T, Meulenberg CJ, van Netten SM (2007) Frequency-dependent properties of a fluid jet stimulus: calibration, modeling, and application to cochlear hair cell bundles. J Assoc Res Otolaryngol 8:167–182

    Article  PubMed Central  PubMed  Google Scholar 

  • Ebner BC, Thiem JD, Lintermans M (2007) Fate of 2 year-old, hatchery-reared trout cod Maccullochella macquariensis (Percichthyidae) stocked into two upland rivers. J Fish Biol 71:182–199

    Article  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    Article  CAS  PubMed  Google Scholar 

  • Faucherre A, Pujol-Martí J, Kawakami K, López-Schier H (2009) Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation. PLoS ONE 4:1–12

    Article  Google Scholar 

  • Fettiplace R (2009) Defining features of the hair cell mechanoelectrical transducer channel. Pflugers Arch Eur J Physiol 458:1115–1123

    Article  CAS  Google Scholar 

  • Flock Å (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed) Handbook of sensory physiology, vol I. Springer, Heidelberg, pp 396–441

    Google Scholar 

  • Flock Å, Orman S (1983) Micromechanical properties of sensory hairs on receptor cells of the inner ear. Hearing Res 11:249–260

    Article  CAS  Google Scholar 

  • Flock Å, Wersäll JMD (1962) A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish with special reference to the function of receptors. J Cell Biol 15:19–27

    Article  CAS  PubMed  Google Scholar 

  • Geddes LA (1972) Electrodes and the measurement of bioelectric events. Wiley, New York

    Google Scholar 

  • Géléoc GSG, Lennan GWT, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B 264:611–621

    Article  Google Scholar 

  • Gelman S, Ayali A, Tytell ED, Cohen AH (2007) Larval lampreys possess a functional lateral line system. J Comp Physiol A 193:271–277

    Article  CAS  Google Scholar 

  • Grush J, Noakes DLG, Moccia RD (2004) The efficacy of clove oil as an anesthetic for the zebrafish, Danio rerio (Hamilton). Zebrafish 1:46–53

    Article  CAS  PubMed  Google Scholar 

  • Higgs DM, Radford CA (2013) The contribution of the lateral line to ‘hearing’ in fish. J Exp Biol 216:1484–1490

    Article  CAS  PubMed  Google Scholar 

  • Howard J, Ashmore JH (1986) Stiffness of sensory hair bundles in the sacculus of the frog. Hearing Res 23:93–104

    Article  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci USA 84:3064–3068

    Article  CAS  PubMed  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199

    Article  CAS  PubMed  Google Scholar 

  • Jielof R, Spoor A, de Vries H (1952) The microphonic activity of the lateral line. J Physiol 116:137–157

    CAS  PubMed  Google Scholar 

  • Kappler JA, Starr CJ, Chan DK, Kollmar R, Hudspeth AJ (2004) A nonsense mutation in the gene encoding a zebrafish myosin VI isoform causes defects in hair-cell mechanotransduction. Proc Natl Acad Sci USA 101:13056–13061

    Article  CAS  PubMed  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836

    Article  CAS  PubMed  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2005) Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433:880–883

    Article  CAS  PubMed  Google Scholar 

  • Kroese ABA, Schellart NAM (1992) Velocity- and acceleration sensitive units in the trunk lateral line of the trout. J Neurophysiol 68:2212–2221

    CAS  PubMed  Google Scholar 

  • Kroese ABA, van der Zalm JM, van den Bercken J (1978) Frequency response of the lateral line organ of Xenopus laevis. Pflügers Arch 375:167–175

    Article  CAS  PubMed  Google Scholar 

  • Kroese ABA, van der Zalm JM, van den Bercken J (1980) Extracellular receptor potentials from the lateral-line organ of Xenopus laevis. J Exp Biol 86:63–77

    Google Scholar 

  • Kros CJ, Rusch A, Richardson GP (1992) Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc Biol Sci 249:185–193

    Article  CAS  PubMed  Google Scholar 

  • Kuiper JW (1956) The microphonic effect of the lateral line organ. PhD Thesis, University of Groningen, The Netherlands

    Google Scholar 

  • Liao JC (2010) Organization and physiology of posterior lateral line afferent neurons in larval zebrafish. Biol Lett 6:402–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Liao JC, Haehnel M (2012) Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. J Neurophysiol 107:2615–2623

    Article  PubMed  Google Scholar 

  • Liff HJ, Shamres S (1972) Structure and motion of cupulae of lateral line organs in Necturus maculosus III. A technique for measuring the motion of free-standing lateral line cupulae. Q Progr Rep Res Lab Electronics MIT 104:332–336

    Google Scholar 

  • Lopéz-Schier H, Hudspeth AJ (2005) Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. Proc Natl Acad Sci USA 102:1496–1501

    Article  PubMed  Google Scholar 

  • Martin P, Hudspeth AJ (1999) Active hair-bundle movements can amplify a hair cell’s response to oscillatory mechanical stimuli. Proc Natl Acad Sci USA 96:14306–14311

    Article  CAS  PubMed  Google Scholar 

  • McBride DW Jr, Hamill OP (1995) A fast pressure-clamp technique for studying mechanogated channels. In: Neher E, Sakmann B (eds) Single channel recording, 2nd edn. Plenum Press, New York

    Google Scholar 

  • McHenry MJ, van Netten SM (2007) The flexural stiffness of superficial neuromasts in the zebrafish (Danio rerio) lateral line. J Exp Biol 210:4244–4253

    Article  PubMed  Google Scholar 

  • McHenry MJ, Strother JA, van Netten SM (2008) Mechanical filtering by the boundary layer and fluid–structure interaction in the superficial neuromast of the fish lateral line system. J Comp Physiol A 194:795–810

    Article  Google Scholar 

  • McHenry MJ, Feitl KE, Strother JA, Van Trump WJ (2009) Larval zebrafish rapidly sense the water flow of a predator’s strike. Biol Lett 5:477–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233:377–389

    Article  CAS  PubMed  Google Scholar 

  • Muir W, Lerche P, Wiese A, Nelson L, Pasloske K, Whittem T (2008) Cardiorespiratory and anesthetic effects of clinical and supraclinical doses of alfaxalone in dogs. Vet Anaesth Analg 35:451–462

    Article  CAS  PubMed  Google Scholar 

  • Muto A, Ohkura M, Gembu A, Nakai J, Kawakami K (2013) Real-time visualization of neuronal activity during perception. Curr Biol 23:307–311

    Article  CAS  PubMed  Google Scholar 

  • Mylonas CC, Cardinaletti G, Sigelaki I, Polzonetti-Magni A (2005) Comparative efficacy of clove oil and 2-phenoxyethanol as anaesthetics in the aquaculture of European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) at different temperatures. Aquaculture 246:467–481

    Article  CAS  Google Scholar 

  • Nicolson T, Rüsch A, Friedrich RW, Granato M, Ruppersberg JP, Nusslein-Volhard C (1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20:271–283

    Article  CAS  PubMed  Google Scholar 

  • Nusslein-Vollhard C, Dahm R (2002) Zebrafish: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  • O’Hagan BJ, Raidal SR (2006) Surgical removal of retrobulbar hemangioma in a goldfish (Carassius auratus). Vet Clin Exot Anim 9:729–733

    Article  Google Scholar 

  • Obholzer N, Wolfson S, Trapani JG, Mo W, Nechiporuk A, Busch-Nentwich E, Seiler C, Sidi S, Söllner C, Duncan RN, Boehland A, Nicolson T (2008) Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. J Neurosci 28:2110–2118

    Article  CAS  PubMed  Google Scholar 

  • Palmer LM, Mensinger AF (2004) Effect of the Anesthetic Tricaine (MS-222) on Nerve Activity in the Anterior Lateral Line of the Oyster Toadfish, Opsanus tau. J Neurophysiol 92:1034–1041

    Google Scholar 

  • Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB (2009) Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain 144:84–94

    Article  CAS  PubMed  Google Scholar 

  • Peters RC, Dénizot J-P (2004) Miscellaneous features of electroreceptors in Gnathonemus petersii (Günther, 1862) (Pisces, Teleostei, Mormyriformes). Belg J Zool 134:61–66

    Google Scholar 

  • Peters RC, Van den Hoek B, Bretschneider F, Struik ML (2001) Saffan: a review and some examples of its use in fishes (Pisces: Teleostei). Neth J Zool 51:421–437

    Google Scholar 

  • Ricci AJ, Fettiplace R (1997) The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells. J Physiol 501:111–124

    Article  CAS  PubMed  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2000) Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J Neurosci 20:7131–7142

    CAS  PubMed  Google Scholar 

  • Ricci AJ, Bai J-P, Song L, Lv C, Zenisek D, Santos-Sacchi J (2013) Patch-clamp recordings from lateral line neuromast hair cells of the living zebrafish. J Neurosci 33:3131–3134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sendin GC, Dinklo T, Pirih P, van Netten SM (in preparation) Mechanical and electrical filter characteristics of superficial neuromasts in the zebrafish lateral line

    Google Scholar 

  • Strelioff D, Flock A (1984) Stiffness of sensory-cell hair bundles in the isolated guinea pig cochlea. Hearing Res 15:19–28

    Article  CAS  Google Scholar 

  • Trapani JG, Nicolson T (2010) Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Methods Cell Biol 100:219–231

    Article  CAS  PubMed  Google Scholar 

  • van Netten SM (1988) Laser interferometer microscope for the measurement of nanometer vibrational displacements of a light scattering microscopic object. J Acoust Soc Am 83:1667–1674

    Article  Google Scholar 

  • van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biol Cyber 94:67–85

    Article  Google Scholar 

  • van Netten SM, Kroese ABA (1987) Laser interferometric measurements on the dynamic behaviour of the cupula in the fish lateral line. Hearing Res 29:55–61

    Article  Google Scholar 

  • van Netten SM, McHenry MJ (2013) The biophysics of the fish lateral line. In: Popper A (ed) Springer handbook of auditory research: the lateral line system (in press)

    Google Scholar 

  • van Netten SM, Dinklo T, Marcotti W, Kros CJ (2003) Channel gating forces govern accuracy of mechano-electrical transduction in hair cells. Proc Natl Acad Sci USA 100:15510–15515

    Article  PubMed  Google Scholar 

  • Yang Y, Chen J, Engel J, Pandya S, Chen S, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. Proc Natl Acad Sci USA 103:18891–18895

    Article  CAS  PubMed  Google Scholar 

  • Zhao YD, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci USA 93:15469–15474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the reviewers and the editors for their insightful comments. The work presented in this chapter was chiefly funded by the EU FP6 Project Cilia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primož Pirih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirih, P., Sendin, G.C., van Netten, S.M. (2014). Techniques for Studying Neuromast Function in Zebrafish. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_14

Download citation

Publish with us

Policies and ethics