Skip to main content

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The idea of using an electric field for the production of textile fibers from a polymer melt or solution was conceived in the early 30 s [1]. In 1969, Taylor conducted a study of a drop of polymer on the tip of a capillary in an electrospinning equipment. This study led to a greater understanding of the behavior of polymer solutions ejected from a capillary [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Formhals, A.: Process and apparatus for preparing artificial threads. US Patent 1,975,504 (1934)

    Google Scholar 

  2. Taylor, G.I.: Electrically driven jets. In: Proceedings of the Royal Society A313, pp. 453–475 (1969)

    Google Scholar 

  3. Sei-Hyun, L., Seok-Min, Y., Sang, J.K., Soo-Jin, P., Young-Seak, L.: Characterization of nanoporous β-SiC fiber complex prepared by electrospinning and carbothermal reduction. Res. Chem. Intermed. 36, 731–742 (2010)

    Article  Google Scholar 

  4. Cloupeau, M., Prunet-Foch, B.: Electrostatic spraying of liquids in cone-jet mode. J. Electrost. 22, 135–159 (1989)

    Article  CAS  Google Scholar 

  5. Yarin, A.L., Koombhongse, S., Reneker, D.H.: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 90, 4836–4846 (2001)

    Article  CAS  Google Scholar 

  6. Feng, J.J.: Stretching of a straight electrically charged viscoelastic jet. J. Nonnewton. Fluid Mech. 116, 55–70 (2003)

    Article  CAS  Google Scholar 

  7. Han, T., Reneker, D.H., Yarin, A.L.: Buckling of jets in electrospinning. Polymer 48, 6064–6076 (2007)

    Article  CAS  Google Scholar 

  8. Azad, A.M.: Fabrication of yttria-stabilized zirconia nanofibers by electrospinning. Mater. Lett. 60, 67–72 (2006)

    Article  CAS  Google Scholar 

  9. Sigmund, W., Yuh, J., Park, H., Maneeratana, V., Pyrgiotakis, G., Daga, A., Taylor, J., Nino, J.C.: Processing and structure relationships in electrospinning of ceramic fiber systems. J. Am. Ceram. Soc. 89, 395–407 (2006)

    Article  CAS  Google Scholar 

  10. Baumgarten, P.K.: Electrostatic spinning of acrylic microfiber. J. Colloid Interface Sci. 6, 64–94 (1971)

    Google Scholar 

  11. He, J.H., Wan, Y.Q., Yu, J.Y.: Application of vibration technology to polymer electrospinning. J. Nonlinear Sci. Num. Simul. 5, 253–262 (2004)

    CAS  Google Scholar 

  12. Reneker, D.H., Yarin, A.L.: Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425 (2008)

    Article  CAS  Google Scholar 

  13. Comini, E., Faglia, G., Sberveglieri, G., Calestani, D., Zanotti, L., Zha, M.: Tin oxide nanobelts electrical and sensing properties. Sens. Actuators B 111, 2–6 (2005)

    Article  Google Scholar 

  14. Demir, M.M., Yilgor, I., Yilgor, E., Erman, B.: Electrospinning of polyurethane fibers. Polymer 43, 3303–3309 (2002)

    Article  CAS  Google Scholar 

  15. Hendricks, C.D., Carson, R.S., Hogan, J.J., Schneider, J.M.: Photomicrography of eletrically sprayed heavy particles. AIAA J. 2, 733–737 (1964)

    Article  Google Scholar 

  16. Das, N., Halder, A.K., Sen, J.M.A., Maiti, H.S.: Sonochemically prepared tin-dioxide based composition for methane sensor. Mater. Lett. 60, 991–994 (2006)

    Article  CAS  Google Scholar 

  17. Ganan-Calvo, A.M., Barrero, A.: Current and droplet size in the electrospraying of liquid scaling laws. J. Aerosol Sci. 28, 249–275 (1997)

    Article  CAS  Google Scholar 

  18. Hartman, R.P.A., Camelot, D.M.A., Marijnissen, J.C.M.: Electrohydrodynamic atomization in the cone-jet mode: physical modeling of the liquid cone and jet. J. Aerosol Sci. 30, 823–849 (1999)

    Article  CAS  Google Scholar 

  19. Fridrikh, S.V., Yu, J.H., Brenner, M.P., Rutledge, G.C.: Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 90(14), 1445021–1445024 (2003)

    Article  Google Scholar 

  20. Fong, H., Reneker, D.H.: Beaded nanofibers formed during electrospinning. Polymer 40, 4585–4592 (1999)

    Article  CAS  Google Scholar 

  21. Shin, Y.M., Brenner, M.P., Rutledge, G.C.: Electrospinning: a whipping fluid jet generates submicron polymer fibers. Appl. Phys. Lett. 78(8), 1149–1151 (2001)

    Article  CAS  Google Scholar 

  22. Hohman, M.M., Shin, M., Rutledge, G., Brenner, M.P.: Electrospinning and electrically forced jets II application. Phys. Fluids 13(8), 2221–2236 (2001)

    Article  CAS  Google Scholar 

  23. Hohman, M.M., Shin, M., Rutledge, G., Brenner, M.P.: Electrospinning and electrically forced jets I Stability theory. Phys. Fluids 13(8), 2201–2220 (2001)

    Article  CAS  Google Scholar 

  24. Shin, Y.M., Hohman, M.M., Brenner, M.P., Rutledge, G.C.: Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42, 9955–9967 (2001)

    Article  CAS  Google Scholar 

  25. Zhou, F.L., Gong, R.H., Porat, I.: Polymeric Nanofibers via flat spinneret electrospinning. Polym. Eng. Sci. 49(12), 2475–2481 (2009)

    Article  CAS  Google Scholar 

  26. Errico, C., Detta, N., Puppi, D., Piras, A.M., Chiellini, F., Chiellini, E.: Polymeric nanostructured items electrospun on a cylindrical template: a simple procedure for their removal. Polym. Int. 60, 1162–1166 (2011)

    Article  CAS  Google Scholar 

  27. Matabola, K.P., Moutloali, R.M.: The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. J. Mater. Sci. 48(16), 5475–5482 (2013)

    Article  CAS  Google Scholar 

  28. Jacobs, V., Anandjiwala, R.D., Maaza, M.: Influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J. Appl. Polym. Sci. 115, 3130–3136 (2010)

    Article  CAS  Google Scholar 

  29. Rodoplu, D., Mutlu, M.: Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces. J. Eng. Fibers Fabr. 7(2), 118–123 (2012)

    CAS  Google Scholar 

  30. Zheng, J., Zhang, H., Zhao, Z., Han, C.C.: Construction of hierarchical structures by electrospinning or electrospraying. Polymer 53, 546–554 (2012)

    Article  CAS  Google Scholar 

  31. Larsen, G., Velarde-Ortiz, R., Minchow, K., Barrero, A., Loscertales, I.G.: A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol–gel chemistry and electrically forced liquid jets. J. Am. Chem. Soc. 125, 1154–1155 (2003)

    Article  CAS  Google Scholar 

  32. Choi, S.S., Lee, S.G., Im, S.S., Kim, S.H., Joo, Y.L.: Silica nanofibers from electrospinning/sol-gel process. J. Mater. Sci. Lett. 22, 891–893 (2003)

    Article  CAS  Google Scholar 

  33. Franco, P.Q., João, C.F.C., Silva, J.C., Borges, J.P.: Electrospun hydroxyapatite fibers from a simple sol–gel system. Mater. Lett. 67(1), 233–236 (2012)

    Article  CAS  Google Scholar 

  34. Tunç, T., Uslu, I., Keskin, S.: Fabrication and characterization of boron doped BaZrO3 nanofibers via anelectrospinning technique. J. Ceram. Process. Res. 12(5), 549–554 (2011)

    Google Scholar 

  35. Maneeratana, V., Sigmund, W.M.: Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor. Chem. Eng. J. 137(1), 137–143 (2008)

    Article  CAS  Google Scholar 

  36. Nuansing, W., Ninmuang, S., Jarernboon, W., Maensiri, S., Seraphin, S.: Structural characterization and morphology of electrospun TiO2 nanofibers. Mater. Sci. Eng. B 131(1–3), 147–155 (2006)

    Article  CAS  Google Scholar 

  37. Li, D., Xia, Y.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4(5), 933–938 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelise Kopp Alves .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kopp Alves, A., Bergmann, C.P., Berutti, F.A. (2013). Electrospinning. In: Novel Synthesis and Characterization of Nanostructured Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41275-2_4

Download citation

Publish with us

Policies and ethics