Skip to main content

Integration of Wind Power Production in a Conventional Power Production System: Stochastic Models and Performance Measures

  • Chapter
  • First Online:
Handbook of Wind Power Systems

Part of the book series: Energy Systems ((ENERGY))

Abstract

A stochastic programming model for the daily coordination of hydro power plants and wind power plants with pumped storage is introduced, with hourly wind power production uncertainty represented by means of a scenario tree. Historical data of wind power production forecast error are assumed to be available, which are used for obtaining wind power production forecast error scenarios. These scenarios are then combined with information from the weather forecast, resulting in wind power production scenarios. Ex-ante and ex-post measures are considered for assessing the value of the stochastic model: the ex-ante performance evaluation is based on the Modified Value of Stochastic Solution for multistage stochastic programming, introduced independently in Escudero (TOP 15(1):48–66, 2007) and Vespucci (Ann Oper Res 193:91–105, 2012); the ex-post performance evaluation is defined in terms of the Value of Stochastic Planning, introduced in Schütz (Int J Prod Econ, 2009), that makes use of the realized values of the stochastic parameter. Both measures indicate the advantage of using the stochastic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moura PS, de Almeida AT (2010) Large scale integration of wind power generation. In: Rebennack S et al (eds) Handbook of power systems I, energy systems. Springer, Berlin, pp 95–119

    Google Scholar 

  2. Castronuovo ED, Lopes JAP (2004) On the optimization of the daily operation of a wind-hydro power plant. IEEE Trans Power Syst 19:1599–1606

    Article  Google Scholar 

  3. Castronuovo ED, Lopes JAP (2004) Optimal operation and hydro storage sizing of a wind-hydro power plant. Int J Elec Power 26:771–778

    Article  Google Scholar 

  4. Castronuovo ED, Lopes JAP (2004) Bounding active power generation of a wind-hydro power plant. In: International conference on probabilistic methods applied to power systems, IEEE, New York, 705–710

    Google Scholar 

  5. Denault M et al (2009) Complementarity of hydro and wind power: improving the risk profile of energy inflows. Energy Policy 37(12):5376–5384

    Google Scholar 

  6. Matevosyan J, Sonder L (2007) Short-term hydropower planning coordinated with wind power in areas with congestion problems. Wind Energy 10(3):195–208

    Google Scholar 

  7. Nørgård P, Giebel G., Holttinen H, Söder L., Petterteig A (2004) Fluctuations and predictability of wind and hydropower, WILMAR deliverable D2.1, Risø-R-1443

    Google Scholar 

  8. Barth R, Söder L, Weber C, Brand H, Swider D (2006) Documentation methodology of the scenario tree tool, WILMAR Deliverable D6.2 (b), Institute of Energy Economics and the Rational Use of Energy (IER), University of Stuttgart, Stuttgart

    Google Scholar 

  9. Garcia-Gonzalez J et al (2008) Stochastic joint optimization of wind generation and pumped-storage units in an electricity market. IEEE Trans Power Syst 23:460–468

    Article  Google Scholar 

  10. Meibom P, Barth R, Brand H, Weber C (2007) Wind power integration studies using a multistage stochastic electricity system model. In: IEEE power engineering society, pp 1–4

    Google Scholar 

  11. Vespucci MT, Maggioni F, Bertocchi M, Innorta M (2010) A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants. Ann Oper Res. doi:10.1007/s10479-010-0756-4

    Google Scholar 

  12. Escudero LF, Garin A, Merino M, Perez G (2007) The value of the stochastic solution in multistage problems. TOP 15(1):48–66. doi:10.1007/S11750-007-00005-4

    Article  MATH  MathSciNet  Google Scholar 

  13. Schütz P, Tomasgard A (2009) The impact of flexibility on operational supply chain planning. Int J Prod Econ. doi:10.1016/j.ijpe.2009.11.004

    Google Scholar 

  14. Dentcheva D, Römisch, W (1998) Optimal power generation under uncertainty via stochastic programming. In: Stochastic programming methods and technical applications. Lecture notes in economics and mathematical systems, vol 458 Springer, New York, pp 22–56

    Google Scholar 

  15. Fleten SE, Kristoffersen T (2008) Short-term hydropower production planning by stochastic programming. Comput Oper Res 35(8):2656–2671

    Article  MATH  Google Scholar 

  16. Latorre J, Cerisola S, Ramos A (2007) Clustering algorithms for scenario tree generation: application to natural hydro inflows. Eur J Oper Res 181(3):1339–1353

    Article  MATH  MathSciNet  Google Scholar 

  17. Nowak M, Römisch W (2000) Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Ann Oper Res 100(1–4):251–272

    Article  MATH  MathSciNet  Google Scholar 

  18. Wallace SW, Fleten SE (2003) Stochastic programming models in energy. In: Ruszczynski A, Shapiro A (eds): stochastic programming. Handbooks in operations research and management science vol 10. Elsevier, Amsterdam, pp 637–677

    Google Scholar 

  19. Dupačová J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs. Ann Oper Res 100(1–4):25–53

    Article  MATH  MathSciNet  Google Scholar 

  20. Kaut M, Wallace SW (2007) Evaluation of scenario-generation methods for stochastic programming. Pac J Optim 3(2):257–271

    MATH  MathSciNet  Google Scholar 

  21. Philpott A, Craddock M, Waterer H (2000) Hydro-electric unit commitment subject to uncertain demand. Eur J Oper Res 125:410–424

    Article  MATH  Google Scholar 

  22. Alessandrini S, Decimi G, Palmieri L, Ferrero E (2006) A wind power forecast system in complex topographic conditions. In: Proceedings of the European wind energy conference and exhibition ewec 2009

    Google Scholar 

  23. Pielke R, Cotton W, Walko R, Tremback C, Lyons W, Grasso L, Nicholls M, Moran M, Wesley D, Lee T, Copeland J (1992) A comprehensive meteorological modeling system: RAMS. Meteorol Atmos Phys 49:69–91

    Article  Google Scholar 

  24. von Bremen, L (2007) Combination of deterministic and probabilistic meteorological models to enhance wind farm forecast. J Phys Conf Ser 75(1): 012050

    Google Scholar 

  25. Kariniotakis G, Pinson P, Marti I, Lozano S, Giebel G (2007) POW’WOW virtual laboratory for wind power forecasting: ViLab, In: EWEC’07 Conference, Milan, Italy 7–10 May 2007

    Google Scholar 

  26. Söder L(2004) Simulation of wind speed forecast errors for operation planning of multi-area power systems. In: Proceedings of international conference on probabilistic methods applied to power systems, IEEE: doi:10.1109/pmaps.2004.243051, pp. 723–728

  27. Koenker R, Bassett G Jr (1978) Regression quantiles. Econometrica 46(1):33–50

    Article  MATH  MathSciNet  Google Scholar 

  28. Engle RF, Granger CWJ (1987) Co-integration and error-correction: Representation, estimation and testing. Econometrica 55:251–276

    Article  MATH  MathSciNet  Google Scholar 

  29. Davidson J (2000) Econometric Theory. Blackwell Publishing

    Google Scholar 

  30. Pflug G, Hochreiter R (2007) Financial scenario generation for stochastic multi-stage decision processes as facility location problem. Ann Oper Res 152(1):257–272

    Article  MATH  MathSciNet  Google Scholar 

  31. Birge J, Louveaux F (2000) Introduction to stochastic programming. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This research was partly supported by the research grants Fondi di Ateneo 2009–2010 of the University of Bergamo (coordinated by M. Bertocchi and L. Brandolini) and by research grant of Accordo Regione Lombardia Metodi di integrazione delle fonti energetiche rinnovabili e monitoraggio satellitare dell’impatto ambientale, CUP: F11J10000200002 (coordinated by A. Fassó). We also acknowledge RSE in Milan, for providing data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Vespucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vespucci, M.T., Bertocchi, M., Tomasgard, A., Innorta, M. (2013). Integration of Wind Power Production in a Conventional Power Production System: Stochastic Models and Performance Measures. In: Pardalos, P., Rebennack, S., Pereira, M., Iliadis, N., Pappu, V. (eds) Handbook of Wind Power Systems. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41080-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41080-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41079-6

  • Online ISBN: 978-3-642-41080-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics