Advertisement

Improving 2D-3D Registration Optimization Using Learned Prostate Motion Data

  • Tharindu De Silva
  • Derek W. Cool
  • Jing Yuan
  • Cesare Romognoli
  • Aaron Fenster
  • Aaron D. Ward
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8150)

Abstract

Prostate motion due to transrectal ultrasound (TRUS) probe pressure and patient movement causes target misalignments during 3D TRUS-guided biopsy. Several solutions have been proposed to perform 2D-3D registration for motion compensation. To improve registration accuracy and robustness, we developed and evaluated a registration algorithm whose optimization is based on learned prostate motion characteristics relative to different tracked probe positions and prostate sizes. We performed a principal component analysis of previously observed motions and utilized the principal directions to initialize Powell’s direction set method during optimization. Compared with the standard initialization, our approach improved target registration error to 2.53±1.25 mm after registration. Multiple initializations along the major principal directions improved the robustness of the method at the cost of additional execution time of 1.5 s. With a total execution time of 3.2 s to perform motion compensation, this method is amenable to useful integration into a clinical 3D guided prostate biopsy workflow.

Keywords

Root Mean Square Motion Vector Prostate Biopsy Probe Position TRUS Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leite, K.M., Camara-Lopes, L., Dall’Oglio, M., Cury, J., Antunes, A., Sañudo, A., Srougi, M.: Upgrading the gleason score in extended prostate biopsy: implications for treatment choice. Int. J. Radiat. Oncol. Biol. Phys. 73(2), 353–356 (2009)CrossRefGoogle Scholar
  2. 2.
    Bax, J., Cool, D., Gardi, L., Knight, K., Smith, D., Montreuil, J., Sherebrin, S., Romagnoli, C., Fenster, A.: Mechanically assisted 3D ultrasound guided prostate biopsy system. Medical Physics 35(12), 5397–5410 (2008)CrossRefGoogle Scholar
  3. 3.
    Baumann, M., Mozer, P., Daanen, V., Troccaz, J.: Prostate biopsy tracking with deformation estimation. Medical Image Analysis 16(3), 562–576 (2012)CrossRefGoogle Scholar
  4. 4.
    Xu, S., Kruecker, J., Turkbey, B., Glossop, N., Singh, A.K., Choyke, P., Pinto, P., Wood, B.J.: Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Computer Aided Surgery 13(5), 255–264 (2008)CrossRefGoogle Scholar
  5. 5.
    Hadaschik, B.A., Kuru, T.H., et al.: A novel stereotactic prostate biopsy system integrating pre-interventional magnetic resonance imaging and live ultrasound fusion. The Journal of Urology 186(6), 2214–2220 (2011)CrossRefGoogle Scholar
  6. 6.
    De Silva, T., Fenster, A., Cool, D.W., Gardi, L., Romagnoli, C., Samarabandu, J., Ward, A.D.: 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy. Medical Physics 40(2), 022904 (2013)CrossRefGoogle Scholar
  7. 7.
    Hu, Y., Ahmed, H.U., Taylor, Z., Allen, C., Emberton, M., Hawkes, D., Barratt, D.: Mr to ultrasound registration for image-guided prostate interventions. Medical Image Analysis 16(3), 687–703 (2012)CrossRefGoogle Scholar
  8. 8.
    Mohamed, A., Davatzikos, C., Taylor, R.: A combined statistical and biomechanical model for estimation of intra-operative prostate deformation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part II. LNCS, vol. 2489, pp. 452–460. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in c: The art of scientific computing. Cambridge U. Press, New York (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tharindu De Silva
    • 1
    • 2
  • Derek W. Cool
    • 1
    • 3
  • Jing Yuan
    • 1
  • Cesare Romognoli
    • 1
    • 3
  • Aaron Fenster
    • 1
    • 2
    • 4
  • Aaron D. Ward
    • 2
    • 4
  1. 1.Imaging Research Laboratories, Robarts Research InstituteThe University of Western OntarioCanada
  2. 2.Biomedical Engineering Graduate ProgramThe University of Western OntarioCanada
  3. 3.Department of Medical ImagingThe University of Western OntarioCanada
  4. 4.Department of Medical BiophysicsThe University of Western OntarioCanada

Personalised recommendations