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Abstract. Prostate motion due to transrectal ultrasound (TRUS) probe
pressure and patient movement causes target misalignments during 3D
TRUS-guided biopsy. Several solutions have been proposed to perform
2D-3D registration for motion compensation. To improve registration
accuracy and robustness, we developed and evaluated a registration al-
gorithm whose optimization is based on learned prostate motion charac-
teristics relative to different tracked probe positions and prostate sizes.
We performed a principal component analysis of previously observed mo-
tions and utilized the principal directions to initialize Powell’s direction
set method during optimization. Compared with the standard initializa-
tion, our approach improved target registration error to 2.53±1.25 mm
after registration. Multiple initializations along the major principal di-
rections improved the robustness of the method at the cost of additional
execution time of 1.5 s. With a total execution time of 3.2 s to perform
motion compensation, this method is amenable to useful integration into
a clinical 3D guided prostate biopsy workflow.

1 Introduction

Prostate biopsy is the clinical standard for cancer diagnosis and is typically per-
formed under two-dimensional (2D) transrectal ultrasound (TRUS) for needle
guidance. Unfortunately, most early stage prostate cancers are not visible on
ultrasound, so the procedure is routinely performed in a systematic, but ulti-
mately random fashion. The procedure suffers from high false negative rates
due to the lack of visible targets [1]. Fusion of pre-biopsy MRI to 3D TRUS
for targeted biopsy might improve cancer detection rates and volume of tumor
sampled. Multiple 3D TRUS systems have been proposed [2,3,4,5] as well as
some commercially available systems. In many MRI-3D TRUS fusion systems,
the pre-biopsy MRI is registered to a static 3D scan acquired at the beginning of
the procedure. Following the mapping of MRI lesions with the 3D TRUS image,
each biopsy location is targeted using the live 2D TRUS image with real-time
tracking of the probe orientation relative to the 3D TRUS volume. Any prostate
motion due to TRUS probe pressure and/or patient movement breaks correspon-
dence between the location of the targets identified in the baseline 3D TRUS
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image and their actual physical location in the live 2D TRUS images. There-
fore, accurate and fast registration to compensate for prostate motion during
the procedure is important to successfully sample suspicious tumour locations.

In this work, we describe and evaluate a 2D-3D TRUS registration that in-
corporates knowledge of prostate motion characteristics into the optimization
process in order to improve registration accuracy and robustness. Multiple al-
gorithms have been proposed [4,6,3] to perform software-based motion compen-
sation by registering intra-procedural TRUS images to an initially acquired 3D
TRUS image. The system proposed in [3] used TRUS images acquired from a
3D TRUS probe to perform image-based tracking to compensate for motion.
Xu et al. [4] performed the registration after initializing several previous 2D
TRUS frames in a 3D coordinate system using the transformations provided by
a magnetically tracked probe. We previously [6] proposed a 2D-3D registration
method using an initialization provided by a mechanically-tracked probe. The
registration needs to be performed in a transformation space of, at minimum, 6
dimensions (for rigid registration), and the non-convexity of the objective func-
tion in the search space can drive the optimizer to local optima. The methods
in [4,6] rely on some initialization mechanism and then optimize an image-based,
non-linear cost function using a local optimization technique whereas in [3] an ini-
tial global search mitigated local minima in the subsequent Powell-Brent search.
While 2D-3D registration using a conventional real-time TRUS probe could be
more challenging than 3D-3D registration [3] using a 3D TRUS probe, motion
compensation with low inter-patient registration error variability and increased
robustness is vital for successful clinical integration. In this work, we investi-
gated whether, in a 2D-3D registration problem, the learned principal directions
of motion induced at different probe positions for prostates with different sizes
can be used to overcome local optima and drive the optimization to converge to
the desired solution.

Statistical representations of high-dimensional transformations have been used
to learn prostate deformations to improve MR-TRUS registration [7,8]. However,
statistical analyses have been previously performed using finite element analysis
(FEA)-simulated motion in 3D TRUS images [7] and phantoms [8] whereas this
work utilized statistics of observed motion in actual prostate interventions. In
this work, the principal components of observed prostate motion vectors were
used to specify the initial optimization search directions. The rest of the paper
describes our approach to learning of prostate motion characteristics and our
adaptation of that learned statistical information to improve the search for the
optimum of the cost function.

2 Methods

2.1 Data Acquisition

Using a mechanically-assisted biopsy system described in [2] we acquired 3D
TRUS images with an end-firing 5-9 MHz TRUS transducer probe (Philips Med-
ical Systems, Seattle, WA) during human clinical biopsy procedures. In addition
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Fig. 1. Probe positions during image acquisition shown relative to (a) transverse view
and (b) axial view (B - baseline, P - sextant locations)

to the baseline 3D TRUS image (IB : R3 → R) that would usually be acquired
following the standard operating procedure for the system in [2], we acquired six
other 3D TRUS images (IPi : R

3 → R where i ∈ {1, 2 . . .6}) after positioning the
TRUS probe at the corresponding standard sextant systematic biopsy locations.
Figure 1 shows the relative bilateral sextant probe positions in base, mid and
apex regions of the prostate. The mechanical encoders attached to the TRUS
probe tracked the 3D position and orientation of the probe in real-time, which
enabled the transformation of 3D volume to a common world coordinate system.
Images were acquired from 29 patients following the protocol described above
with 7 3D TRUS images per patient, for 203 images in total. During 2D-3D
registration a transverse 2D slice (Ipi : R2 → R) was obtained from 3D TRUS
images at each sextant probe position and registered to the baseline 3D image.

2.2 Principal Component Analysis (PCA) of Motion Vectors

Corresponding fiducial pairs of anatomically homologous points (corresponding,
naturally-occurring micro-calcifications) were manually identified in 3D TRUS
image pairs consisting of {IB, IPi} for each patient. We denote the fiducials
identified in the baseline image as fB and those identified in the image with probe
position i for that patient as fPi . For each patient j, we computed the optimal
rigid alignment using the identified fiducials that defines the best six parameter
rigid transformation vector θ∗ij out of all the possible rigid transformation vectors
θij according to,

θ∗ij = argmin
θij

K∑

k=1

(fk
Pi
(θij(x, y, z))− fk

B(Ψij(x, y, z)))
2, (1)

where Ψij : R3 → R
3 is the transformation obtained from tracking the probe

(which maps the 3D image to the world coordinate system) and K is the number
of fiducial pairs identified per registration. Six such fiducial-based registrations
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per patient were performed, one for each sextant location. A total of 1003 fiducial
pairs were identified with an average of 6 fiducial pairs per registration. It is
important to note that these fiducial pairs were identified only to measure and
characterize prostate motion; our registration algorithm is fully image-based and
does not rely on the identification of fiducial landmarks.

We conjectured that the motion characteristics of the prostate would depend
on the position of the probe and its size, so we performed the PCA separately
for each probe position and also separately for small (<40 cc) and large (>40
cc) prostates. In our data set of 29 patients, 18 were small prostates and 11
were large prostates. Each θ∗ij represents a point in the six-dimensional (6D)
rigid transformation space that corresponds to the optimal rigid motion when
the TRUS probe is at position i. For each probe position i and for prostates with
similar sizes, we analysed the principal components of motion from the cloud of
points in a 6D space consisting of observed prostate motions. We calculated a
covariance matrix at a probe position i for each patient excluding that particular
patient’s motion θ∗ij according to the following equation.

COV =
1

N − 1

N−1∑

n=1

(θ∗ij − θ̄∗i )
T (θ∗ij − θ̄∗i ), (2)

where θ̄∗i is the mean calculated excluding θ̄∗ij for the nth patient. The N of
eq 2 would either be 11 or 18 depending the prostate size of that particular
patient. The eigen vectors of COV yields a set of principal directions of motion
{U1, U2 . . . , U6} according to the variation of other observed motion vectors in
that category.

2.3 Optimization Strategy

During registration, the normalized cross-correlation (NCC) is optimized as
follows:

argmax
θ

NCC(Ipi (Ψ2D−3D(x, y, z)), IB(θ(x, y, z))). (3)

where Ψ2D−3D maps the 2D transverse slice Ipi to the 3D world coordinate sys-
tem and θ is the registration transformation vector. We used Powell’s method [9],
which is a local optimizer that does not calculate the derivative of the function
during optimization. For a D-dimensional quadratic function, line minimizations
alongD linearly independent, mutually conjugate directions will exactly find the
function minimum. Powell’s algorithm determines a set of such directions after
initialization with the columns of anyD×D orthogonal matrix. For a non-convex
function, which is the case for the above objective function in our context, re-
peated cycles of D line searches are done iteratively until convergence. Usually
this initialization is performed using the column vectors of an identity matrix [9].
The vectors {V1, V2, . . . , V6} obtained from an identity matrix would initially
search along each translation and rotation direction in the six-dimensional rigid
transformation space. However, these search directions may be suboptimal with
respect to the avoidance of local optima.



128 T. De Silva et al.

Our approach is to use information obtained from the observed principal mo-
tion directions {U1, U2, . . . , U6} to optimize the overall search strategy using
Powell’s method. Experimentally, we found that the first three principal compo-
nents of the motion vectors {U1, U2, U3} explained 99% of the observed variance
in our data set. Thus, {U1, U2, U3} contain the directions in the transformation
space corresponding to the greatest amount of inter-subject variability in the
transformation for ideally accurate registration. It follows that {U4, U5, U6} con-
tain the directions in the transformation space corresponding to the least amount
of inter-subject variability in the transformation for ideally accurate registration.
Thus, the registration problem can be partitioned into two sub-problems: (1) reg-
istration by transformation along axes {U4, U5, U6} (a relatively easier problem
since the correct solution is very consistent across subjects), and (2) registration
by transformation along axes {U1, U2, U3} (a relatively more challenging prob-
lem since the correct solution has high inter-subject variability). Based on this
observation, we designed a two-stage registration algorithm. In the first stage, we
solve easier problem (1) by local optimization within the subspace {U4, U5, U6}
using Powell’s method to improve the initialization of the next stage. Then, we
solve harder problem (2) by first performing an exhaustive local search on a
grid oriented according to {U1, U2, U3} (to mitigate local optima in this sub-
space where solutions have high inter-subject variability), and use the result to
initialize a second Powell optimization within the space of the eigenvectors. The
key insight behind this approach is that whereas an exhaustive 6D grid search is
computationally expensive, it is feasible to mitigate local optima by performing
an exhaustive search in the 3D space yielded by dimensionality reduction by
PCA. The formal description of this algorithm is provided in algorithm below.

Step 1: Initialize the current position with θ̄∗i of the patient for direction i.
Step 2: Perform Powell’s optimization along directions {U4, U5, U6}
corresponding to the directions with least inter-patient variability. Update
current position θ.
Step 3: Evaluate metric values on a grid of Tx × Ty × Tz points placed
along directions {U1, U2, U3} centred at the current position θ. Update
the current position with the best metric value location.
Step 4: Perform Powell’s method with the principal component vectors
{U1, U2 . . . , U6} as the basis.

For the experiments performed in this paper, the size of the grid in multiple
metric evaluations was 10 × 7 × 7. This method required minimization in 3
directions and 490 metric evaluations in addition to the conventional method.
However, both the NCC calculation for a single image and independent metric
evaluations can be performed in parallel to reduce the computation time.

2.4 Validation

For the 29 patients, we performed 174 registrations in total with 6 registrations
per patient when the probe was positioned at each sextant biopsy location.
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We validated the registrations using the manually identified fiducials for each
image pair and calculated the root mean square (RMS) target registration error
(TRE). We used leave-one-out cross-validation approach; fiducials in test images
were excluded during PCA. To compare the results, we performed registrations
using Powell’s method as in [9], henceforth referred to as the classical method,
and using the updated version described in this paper and calculated the TREs
separately for each method.

3 Results

Table 1 shows the RMS TREs and standard deviations (std) of errors before
registration, after registration with the classical Powell’s method, after registra-
tion with the updated method, and fiducial registration errors (FRE). Figure 2
shows distributions of TREs before and after registration with the two methods.
With the updated method, we observed a statistically significant difference in
TRE (paired t-test rejected the null-hypothesis with p < 0.001) compared to the
classical method indicating an improvement in accuracy and robustness of the
registration. After initializing with the learned principal directions of motion,
the average number of iterations required for convergence decreased from 4.9
to 3.2. Using a GPU accelerated implementation for NCC calculation (NVIDIA
GTX 580 GPU card and Intel Xeon 2.5 GHz processor), the updated method
takes approximately an additional 1.5 s. However, multiple metric evaluations
along the principal directions of motion can be executed in parallel to further
reduce execution time during registration. Figure 3 contain five representative
example images, depicting the visual alignment qualitatively before and after
registration with the methods described in the paper.
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Fig. 2. TRE histograms (a) TRE before registration. (b) TRE after the classical
method. (c) TRE after the updated method.

4 Discussion and Conclusions

Incorporation of learned prostate motions for optimizer search space improves
2D-3D TRUS registration. PCA yielded search directions consisting of rotation
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Table 1. Comparisons of performance before, after registration and FRE

Before Classical method Our method FRE

RMS TRE (mm) 4.95 3.12 2.53 1.15
std (mm) 2.37 1.70 1.25 0.57
Avg number of iterations xx 4.9 3.2 xx
Execution time (s) xx 1.7 3.2 xx

and translation along non-Euclidean basis vectors. The percentage of registra-
tions with TRE > 5 mm decreased from 9.2% to 2.3% with the updated method
in comparison to the classical method, indicating improved robustness. The cal-
culation of the best rigid transformations (θ∗) to characterize prostate motion is
limited by the operator’s ability to accurately identify and correspond fiducial
locations. Since we considered the transformations given by the manually identi-
fied fiducials as the ground truth, fiducial localization error would challenge the
registration algorithms in improving accuracy. Furthermore, any non-rigid de-
formation of the prostate would challenge our assumption of rigid motion. The
ability of the registration to match the best rigid alignment calculated based
on fiducials identified throughout the prostate could also be limited by the fact
that we are restricted to using a single 2D slice during registration. In such a
situation, non-rigid deformation might pose an additional challenge for the al-
gorithm to estimate the overall rigid motion of the prostate by only using the
image information in the 2D slice.

Fig. 3. Images before and after registration for 5 patients. Top row: extracted 2D
images (Ipi). Middle row: corresponding frames from the registered IB. Bottom row:
corresponding frames before registration obtained from IB after tracking the probe.
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In this paper, we demonstrated that the learned prostate motion directions
can be used to improve 2D-3D TRUS registration optimization, which may have
application to MRI-3D TRUS fusion biopsy accuracy. Our results indicate that
we can improve the accuracy and robustness of the algorithm, at the cost of 1-2
s of additional execution time.
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