Skip to main content

Coarse-Grained Brownian Dynamics Simulation of Rule-Based Models

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNBI,volume 8130)

Abstract

Studying spatial effects in signal transduction, such as co-localization along scaffold molecules, comes at a cost of complexity. In this paper, we propose a coarse-grained, particle-based spatial simulator, suited for large signal transduction models. Our approach is to combine the particle-based reaction and diffusion method, and (non-spatial) rule-based modeling: the location of each molecular complex is abstracted by a spheric particle, while its internal structure in terms of a site-graph is maintained explicit. The particles diffuse inside the cellular compartment and the colliding complexes stochastically interact according to a rule-based scheme. Since rules operate over molecular motifs (instead of full complexes), the rule set compactly describes a combinatorial or even infinite number of reactions. The method is tested on a model of Mitogen Activated Protein Kinase (MAPK) cascade of yeast pheromone response signaling. Results demonstrate that the molecules of the MAPK cascade co-localize along scaffold molecules, while the scaffold binds to a plasma membrane bound upstream component, localizing the whole signaling complex to the plasma membrane. Especially we show, how rings stabilize the resulting molecular complexes and derive the effective dissociation rate constant for it.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40708-6_6
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40708-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   83.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P.: Detailed simulations of cell biology with smoldyn 2.1. PLoS Computational Biology 6(3), 1000705 (2010)

    CrossRef  Google Scholar 

  2. Berdnikov, V., Doktorov, A.: Steric factor in diffusion-controlled chemical reactions. Chemical Physics 69(1), 205–212 (1982)

    CrossRef  Google Scholar 

  3. Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. Danos, V., Honorato-Zimmer, R., Riveri, S., Stucki, S.: Rigid geometric constraints for Kappa models. Electronic Notes in Theoretical Computer Science (2012)

    Google Scholar 

  5. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: LICS 2010, pp. 362–381 (2010)

    Google Scholar 

  6. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Erban, R., Chapman, S.: Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. Phys. Biol. 6, 046001 (2009)

    CrossRef  Google Scholar 

  8. Faeder, J., Blinov, M., Hlavacek, W.: Rule-based modeling of biochemical systems with bionetgen. In: Systems Biology, pp. 113–167. Springer (2009)

    Google Scholar 

  9. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proceedings of the National Academy of Sciences 106(16), 6453–6458 (2009)

    CrossRef  Google Scholar 

  10. Feret, J., Henzinger, T.A., Koeppl, H., Petrov, T.: Lumpability abstractions of rule-based systems. In: Ciobanu, G., Koutny, M. (eds.) MeCBIC. EPTCS, vol. 40, pp. 142–161 (2010)

    Google Scholar 

  11. Gruenert, G., Ibrahim, B., Lenser, T., Lohel, M., Hinze, T., Dittrich, P.: Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics 11(1), 307 (2010)

    CrossRef  Google Scholar 

  12. Klann, M., Koeppl, H.: Spatial simulations in systems biology: from molecules to cells. International Journal of Molecular Sciences 13, 7798–7827 (2012)

    CrossRef  Google Scholar 

  13. Klann, M., Koeppl, H.: Reaction schemes, escape times and geminate recombinations in particle-based spatial simulations of biochemical reactions. Physical Biology 10, 046005 (2013)

    CrossRef  Google Scholar 

  14. Klann, M., Ganguly, A., Koeppl, H.: Improved reaction scheme for spatial stochastic simulations with single molecule detail. In: Proceedings of the International Workshop on Computional Systems Biology, WCSB 2011, Zurich, pp. 93–96 (2011)

    Google Scholar 

  15. Klann, M., Lapin, A., Reuss, M.: Stochastic Simulation of Reactions in the Crowded and Structured Intracellular Environment: Influence of Mobility and Location of the Reactants. BMC Systems Biology 5(1), 71 (2011)

    CrossRef  Google Scholar 

  16. Morelli, M., Ten Wolde, P.: Reaction Brownian dynamics and the effect of spatial fluctuations on the gain of a push-pull network. J. Chem. Phys. 129, 054112 (2008)

    CrossRef  Google Scholar 

  17. Mugler, A., Tostevin, F., ten Wolde, P.: Spatial partitioning improves the reliability of biochemical signaling. Proceedings of the National Academy of Sciences 110(15), 5927–5932 (2013)

    CrossRef  Google Scholar 

  18. Petrov, T., Feret, J., Koeppl, H.: Reconstructing species-based dynamics from reduced stochastic rule-based models. In: Proceedings of the Winter Simulation Conference, p. 225. Winter Simulation Conference (2012)

    Google Scholar 

  19. Thomson, T., et al.: Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proceedings of the National Academy of Sciences 108(50), 20265–20270 (2011)

    CrossRef  Google Scholar 

  20. Tolle, D.P., Le Novère, N.: Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes. BMC Systems Biology 4(1), 24 (2010)

    CrossRef  Google Scholar 

  21. Traytak, S.: Diffusion-controlled reaction rate to an active site. Chemical Physics 192(1), 1–7 (1995)

    CrossRef  Google Scholar 

  22. Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophysical Journal 87, 3518–3524 (2004)

    CrossRef  Google Scholar 

  23. ZigCell3D: from ScienceVisuals, zigcell.sciencevisuals.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klann, M., Paulevé, L., Petrov, T., Koeppl, H. (2013). Coarse-Grained Brownian Dynamics Simulation of Rule-Based Models. In: Gupta, A., Henzinger, T.A. (eds) Computational Methods in Systems Biology. CMSB 2013. Lecture Notes in Computer Science(), vol 8130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40708-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40708-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40707-9

  • Online ISBN: 978-3-642-40708-6

  • eBook Packages: Computer ScienceComputer Science (R0)