Pathophysiology of Vitreo-Macular Interface

Part of the Essentials in Ophthalmology book series (ESSENTIALS)


Persistent vitreo-macular adhesions, vitreoschisis with cortical vitreous remnants on the ILM and epiretinal fibrocellular proliferation are associated with vitreo-macular traction. Whereas age-related posterior vitreous detachment is generally accepted as an important pathogenic factor in the development of vitreo-macular traction, the significance of cellular proliferation and migration is still under debate. In the light of the current literature and in our own experience, epiretinal cell proliferations are an essential part of the pathophysiology of vitreo-macular traction. Both, hyalocyte activation in the vitreous cortex and glial cell activation in retinal layers appear to be initiated by age-related vitreous changes driving cell-mediated traction at the vitreoretinal interface as a prerequisite for the development of vitreo-macular traction disorders.


Glial Fibrillary Acidic Protein Macular Hole Internal Limit Membrane Epiretinal Membrane Posterior Vitreous Detachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are especially grateful to Anselm Kampik, Professor and Chairman of the Department of Ophthalmology at the Ludwig-Maximilians-University Munich, for his enduring support and contribution to our studies. We also would like to thank Christos Haritoglou for his dedication and continuing collaboration. Regarding electron microscopy, we would like to thank Renate Scheler, Helga Wehnes and Axel K. Walch for their outstanding technical assistance.


  1. Balazs EA, Toth LZ, Eckl EA et al (1964) Studies on the structure of the vitreous body. XII. Cytologicall and histochemical studies on the cortical tissue layer. Exp Eye Res 3:57–71PubMedCrossRefGoogle Scholar
  2. Bando H, Ikuno Y, Choi JS et al (2005) Ultrastructure of internal limiting membrane in myopic foveoschisis. Am J Ophthalmol 391:197–199CrossRefGoogle Scholar
  3. Bishop PN, Holmes DF, Kadler KE et al (2004) Age- related changes on the surface of the vitreous collagen fibrils. Invest Ophthalmol Vis Sci 45:1041–1046PubMedCrossRefGoogle Scholar
  4. Bringmann A, Wiedemann P (2009) Involvement of Müller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 247:865–883PubMedCrossRefGoogle Scholar
  5. Bringmann A, Pannicke T, Grosche J et al (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424PubMedCrossRefGoogle Scholar
  6. Dallon JC, Ehrlich HP (2010) Differences in the mechanism of collagen lattice contraction by myofibroblasts and smooth muscle cells. J Cell Biochem 111:362–369PubMedCrossRefGoogle Scholar
  7. Dingemans KP, Teeling P (1994) Long-spacing collagen and proteoglycans in pathologic tissue. Ultrastruct Pathol 18:539–547PubMedCrossRefGoogle Scholar
  8. Eyden A, Tzaphlidou M (2001) Structural variants of collagen in normal and pathologic tissues: role of electron microscopy. Micron 32:287–300PubMedCrossRefGoogle Scholar
  9. Fekrat S, Wendel RT, de la Cruz Z et al (1995) Clinicopathologic correlation of an epiretinal membrane associated with a recurrent macular hole. Retina 15:53–57PubMedCrossRefGoogle Scholar
  10. Fisher SK, Lewis GP (2003) Müller cell and neuronal remodeling in retinal attachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vision Res 43:887–897PubMedCrossRefGoogle Scholar
  11. Gandorfer A (2007) Diffuse diabetic macular edema: pathology and implications for surgery. Dev Ophthalmol 39:88–95PubMedGoogle Scholar
  12. Gandorfer A (2009) Objective of pharmacologic vitreolysis. Dev Ophthalmol 44:1–6PubMedGoogle Scholar
  13. Gandorfer A, Rohleder M, Kampik A (2002) Epiretinal pathology of vitreomacular traction syndrome. Br J Ophthalmol 86:902–909PubMedCrossRefGoogle Scholar
  14. Gandorfer A, Rohleder M, Grosselfinger S et al (2005) Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular traction. Am J Ophthalmol 139:638–652PubMedCrossRefGoogle Scholar
  15. Gandorfer A, Scheler R, Schumann R et al (2009) Interference microscopy delineates cellular proliferations on flat mounted internal limiting membrane specimens. Br J Ophthalmol 93:120–122PubMedCrossRefGoogle Scholar
  16. Gandorfer A, Schumann R, Scheler R et al (2011) Pores of the inner limiting membrane in flat-mounted surgical specimens. Retina 31:977–981PubMedCrossRefGoogle Scholar
  17. Gandorfer A, Haritoglou C, Scheler R et al (2012) Residual cellular proliferation on the internal limting membrane in macular pucker surgery. Retina 32(3):477–485, [Epub ahead of print]. PMID: 22068175PubMedCrossRefGoogle Scholar
  18. Gastaud P, Bétis F, Rouhette H et al (2000) Ultrastructural findings of epimacular membrane and detached posterior hyaloid in vitreomacular traction syndrome. J Fr Ophtalmol 23:587–593PubMedGoogle Scholar
  19. Green WR (2006) The macular hole: histopathologic studies. Arch Ophthalmol 124:317–321PubMedCrossRefGoogle Scholar
  20. Grierson I, Mazure A, Hogg P et al (1996) Non-vascular vitreoretinopathy: the cells and the cellular basis of contraction. Eye 10:671–684PubMedCrossRefGoogle Scholar
  21. Gupta P, Yee KM, Garcia P et al (2011) Vitreoschisis in macular diseases. Br J Ophthalmol 95:376–380PubMedCrossRefGoogle Scholar
  22. Hannover A (1845) Entdeckung des Baues des Glaskörpers. Müller Arch 467–477Google Scholar
  23. Haritoglou C, Schumann RG, Kampik A et al (2007) Glial cell proliferation under the internal limiting membrane in a patient with cellophane maculopathy. Arch Ophthalmol 125:1301–1302PubMedCrossRefGoogle Scholar
  24. Heidenkummer HP, Kampik A (1992) Proliferative activity and immunohistochemical cell differentiation in human epiretinal membranes. Ger J Ophthalmol 1:170–175PubMedGoogle Scholar
  25. Hirayama K, Hata Y, Noda Y et al (2004) The involvement of the rho-kinase pathway and its regulation in cytokine-induced collagen gel contraction by hyalocytes. Invest Ophthalmol Vis Sci 45:3896–3903PubMedCrossRefGoogle Scholar
  26. Hiscott PS, Grierson I, McLeod D (1984a) Retinal pigment epithelial cells in epiretinal membranes: an immunohistochemical study. Br J Ophthalmol 68:708–715PubMedCrossRefGoogle Scholar
  27. Hiscott PS, Grierson I, Trombetta CJ et al (1984b) Retinal and epiretinal glia – an immunochistochemical study. Br J Ophthalmol 68:698–707PubMedCrossRefGoogle Scholar
  28. Ishida S, Yamazaki K, Shinoda K et al (2000) Macular hole retinal detachment in highly myopic eyes. Ultrastructure of surgically removed epiretinal membrane and clinicopathologic correlation. Retina 20:176–183PubMedCrossRefGoogle Scholar
  29. Johnson MW (2002) Improvements in the understanding and treatment of macular hole. Curr Opin Ophthalmol 13:152–160PubMedCrossRefGoogle Scholar
  30. Johnson MW (2005a) Perifoveal vitreous detachment and its macular complications. Trans Am Ophthalmol Soc 103:537–567PubMedGoogle Scholar
  31. Johnson MW (2005b) Tractional cystoid macular edema: a subtle variant of the vitreomacular traction syndrome. Am J Ophthalmol 140:184–192PubMedCrossRefGoogle Scholar
  32. Johnson MW (2009) Etiology and treatment of macular edema. Am J Ophthalmol 147:11–21PubMedCrossRefGoogle Scholar
  33. Johnson MW (2010) Posterior vitreous detachment: evolution and complications of its early stages. Am J Ophthalmol 49:371–382CrossRefGoogle Scholar
  34. Kampik A, Green WR, Michels RG et al (1980) Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery. Am J Ophthalmol 90:797–809PubMedGoogle Scholar
  35. Kampik A, Kenyon KB, Michels RG et al (1981) Epiretinal and vitreous membranes: comparative study of 56 cases. Arch Ophthalmol 99:1445–1454PubMedCrossRefGoogle Scholar
  36. Kenawy N, Wong D, Stappler T et al (2010) Does the presence of an epiretinal membrane alter the retinal cleavage plan during internal limiting membrane peeling? Ophthalmology 117:320–323PubMedCrossRefGoogle Scholar
  37. Kodal H, Weick M, Moll V et al (2000) Involvement of calcium-activated potassium channels in the regulation of DNA synthesis in cultured Müller glial cells. Invest Ophthalmol Vis Sci 41:4262–4267PubMedGoogle Scholar
  38. Kohno T, Sorgnte N, Ishibashi T et al (1987) Immunofluorescence studies of fibronectin and laminin in the human eye. Invest Ophthalmol Vis Sci 28:500–514Google Scholar
  39. Kohno RI, Hata Y, Kawahara S et al (2009) Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction. Br J Ophthalmol 93:1020–1026PubMedCrossRefGoogle Scholar
  40. Krebs I, Brannath W, Glittenberg C et al (2007) Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration. Am J Ophthalmol 144:741–746PubMedCrossRefGoogle Scholar
  41. Krebs I, Glittenberg C, Zeiler F, Binder S (2011) Spectral domain optical coherence tomography for higher precision in the evaluation of vitreoretinal adhesions in exudative age-related macular degeneration. Br J Ophthalmol 95:1415–1418PubMedCrossRefGoogle Scholar
  42. Lazarus HS, Hageman GS (1994) In situ characterization of the human hyalocytes. Arch Ophthalmol 112:1356–1362PubMedCrossRefGoogle Scholar
  43. Lesnik Oberstein SY, Lewis GP, Dutra T et al (2011) Evidence that neurites in human epiretinal membranes express melanopsin, calretinin, rodopsin and neurofilament protein. Br J Ophthalmol 95:266–272PubMedCrossRefGoogle Scholar
  44. Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290PubMedGoogle Scholar
  45. Lindqvist N, Liu Q, Zajadacz J et al (2010) Retinal glial (Müller) cells: sensing and responding to tissue stretch. Invest Ophthalmol Vis Sci 51:1683–1690PubMedCrossRefGoogle Scholar
  46. Messmer EM, Heidenkummer HP, Kampik A (1998) Ultrastructure of epiretinal membranes associated with macular holes. Graefes Arch Clin Exp Ophthalmol 236:248–254PubMedCrossRefGoogle Scholar
  47. Nakazawa T, Takeda M, Lewis GP et al (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768PubMedCrossRefGoogle Scholar
  48. Parolini B, Schumann RG, Cereda MM et al (2011) Lamellar macular hole: a clinicopathologic correlation of surgically excised internal limiting membrane specimens. Invest Ophthalmol Vis Sci 52:9074–9083PubMedCrossRefGoogle Scholar
  49. Qiao H, Hisatomi T, Sonoda KH et al (2005) The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol 89:513–517PubMedCrossRefGoogle Scholar
  50. Russel SR, Shepherd JD, Hageman GS (1991) Distribution of glycoconjugates in the human retinal internal limiting membrane. Invest Ophthalmol Vis Sci 32:1986–1995Google Scholar
  51. Sakamoto T, Ishibashi T (2011) Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology? Retina 31:222–228PubMedCrossRefGoogle Scholar
  52. Schumann RG, Gandorfer A (2010) Vitreoretinal degenerative macular diseases. Klin Monbl Augenheilkd 227:R49–R60PubMedCrossRefGoogle Scholar
  53. Schumann RG, Schaumberger M, Rohleder M et al (2006) Ultrastructure of the vitromacular interface in full-thickness idiopathic macular holes: a consecutive analysis of 100 cases. Am J Ophthalmol 141:1112–1119PubMedCrossRefGoogle Scholar
  54. Schumann RG, Schaumberger MM, Rohleder M et al (2007) The primary objective in macular hole surgery. Ultrastructural features of the vitreomacular interface. Ophthalmologe 104:783–789PubMedCrossRefGoogle Scholar
  55. Schumann RG, Rohleder M, Schaumberger MM et al (2008) Idiopathic macular holes: ultrastructural aspects of surgical failure. Retina 28:340–349PubMedCrossRefGoogle Scholar
  56. Schumann RG, Eibl KH, Zhao F et al (2011) Immunocytochemical and ultrastructural evidence of glial cells and hyalocytes in internal limiting membrane specimens of idiopathic macular holes. Invest Ophthalmol Vis Sci 3:7822–7834CrossRefGoogle Scholar
  57. Schwartz SD, Alexander R, Hiscott P et al (1996) Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark in vitrectomy for diabetic traction retinal detachment. Ophthalmology 103:323–328CrossRefGoogle Scholar
  58. Sebag J (1996) Diabetic vitreopathy. Ophthalmology 103:205–206PubMedCrossRefGoogle Scholar
  59. Sebag J (2004) Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease. Graefes Arch Clin Exp Ophthalmol 242:690–698PubMedCrossRefGoogle Scholar
  60. Sebag J (2008) Vitreochisis. Graefes Arch Clin Exp Ophthalmol 246:329–332PubMedCrossRefGoogle Scholar
  61. Sebag J, Gupta P, Rosen RR et al (2007) Macular holes and macular pucker: the role of vitreoschisis as imaged by optical coherence tomography/scanning laser ophthalmoscopy. Trans Am Ophthalmol Soc 105:121–129PubMedGoogle Scholar
  62. Sebag J, Wang MY, Nguyen D et al (2009) Vitreopapillary adhesion in macular diseases. Trans Am Ophthalmol Soc 107:35–46PubMedGoogle Scholar
  63. Shinoda K, Hirakata A, Hida T et al (2000) Ultrastructural and immunohistochemical findings in five patients with vitreomacular traction syndrome. Retina 20:289–293PubMedCrossRefGoogle Scholar
  64. Smiddy WE, Maguire AM, Green WR et al (1989) Idiopathic epiretinal membranes: ultrastructural characteristics and clinicopathologic correlation. Ophthalmology 96:811–820PubMedCrossRefGoogle Scholar
  65. Uchino E, Uemura A, Ohba N (2001) Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol 119:1475–1479PubMedCrossRefGoogle Scholar
  66. Vanderbeek BL, Johnson MW (2012) The diversity of traction mechanisms in myopic traction maculopathy. Am J Ophthalmol 153:93–102PubMedCrossRefGoogle Scholar
  67. Vinores SA, Campochiaro PA, Conway BP (1990) Ultrastructural and electron-immunocytochemical characterization of cells in epiretinal membranes. Invest Ophthalmol Vis Sci 31:14–28PubMedGoogle Scholar
  68. Yoshida M, Kishi S (2007) Pathogenesis of macular hole recurrence and its prevention by internal limiting membrane peeling. Retina 27:169–173PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Ophthalmology, Vitreoretinal and Pathology UnitLudwig-Maximilians-UniversityMunichGermany

Personalised recommendations