A Dense Stereo Matching Algorithm with Occlusion and Less or Similar Texture Handling

  • Hehua Ju
  • Chao Liang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8008)


Due to image noise, illumination and occlusion, to get an accurate and dense disparity with stereo matching is still a challenge. In this paper, a new dense stereo matching algorithm is proposed. The proposed algorithm first use cross-based regions to compute an initial disparity map which can deal with regions with less or similar texture. Secondly, the improved hierarchical belief propagation scheme is employed to optimize the initial disparity map. Then the left-right consistency check and mean-shift algorithm are used to handle occlusions. Finally, a local high-confidence strategy is used to refine the disparity map. Experiments with the Middlebury dataset validate the proposed algorithm.


Stereo Match Similar Texture Smoothness Term Adaptive Window Stereo Match Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int’l Journal of Computer Vision 47(1), 7–42 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Okutomi, M., Kanade, T.: A multiple baseline stereo. IEEE Trans. PAMI 15(4), 353–363 (1993)CrossRefGoogle Scholar
  3. 3.
    Geiger, D., Ladendorf, B., Yuille, A.: Occlusions and binocular stereo. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 425–433. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  4. 4.
    Fusiello, A., Roberto, V., Trucco, E.: Efficient stereo with multiple windowing. In: Proceedings of IEEE CVPR, pp. 858–863 (1997)Google Scholar
  5. 5.
    Kanade, T., Okutomi, M.: A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. PAMI 16(9), 920–932 (1994)CrossRefGoogle Scholar
  6. 6.
    Salmen, J., Schlipsing, M., Edelbrunner, J., Hegemann, S., Lüke, S.: Real-time stereo vision: Making more out of dynamic programming. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1096–1103. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Yang, Q.X., Wang, L., et al.: Real-time global stereo matching using hierarchical belief propagation. In: Proceedings of BMVC (2006)Google Scholar
  8. 8.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. PAMI 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  9. 9.
    Zhang, K., Lu, J., Lafruit, G.: Cross-based local stereo matching using orthogonal integral images. IEEE Trans. CSVT 19(7), 1073–1079 (2009)Google Scholar
  10. 10.
    Comaniciu, D., Meer, P.: Mean-shift: A robust approach toward feature space analysis. IEEE Trans. PAMI 24(5), 603–619 (2002)CrossRefGoogle Scholar
  11. 11.
    Lu, J., Lafruit, G., Catthoor, F.: Anisotropic local high-confidence voting for accurate stereo correspondence. In: Proceedings of of the SPIE, vol. 6812, pp. 68120J–68120J-12 (January 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hehua Ju
    • 1
  • Chao Liang
    • 1
  1. 1.College of Electronic Information and Control EngineeringBeijing University of TechnologyBeijingP.R. China

Personalised recommendations